These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24721424)

  • 1. Electrochemical enzymeless detection of superoxide employing naringin-copper decorated electrodes.
    Madhurantakam S; Selvaraj S; Nesakumar N; Sethuraman S; Rayappan JB; Maheswari Krishnan U
    Biosens Bioelectron; 2014 Sep; 59():134-9. PubMed ID: 24721424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case.
    Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M
    Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode.
    Derkus B; Emregul E; Emregul KC
    Talanta; 2015 Mar; 134():206-214. PubMed ID: 25618659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.
    Song MJ; Hwang SW; Whang D
    Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode.
    Luo J; Jiang S; Zhang H; Jiang J; Liu X
    Anal Chim Acta; 2012 Jan; 709():47-53. PubMed ID: 22122930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.
    Zhu X; Liu T; Zhao H; Shi L; Li X; Lan M
    Biosens Bioelectron; 2016 May; 79():449-56. PubMed ID: 26745791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel non-enzymatic lindane sensor based on CuO-MnO2 hierarchical nano-microstructures for enhanced sensitivity.
    Anu Prathap MU; Sun S; Wei C; Xu ZJ
    Chem Commun (Camb); 2015 Mar; 51(21):4376-9. PubMed ID: 25674914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically modified flexible strips as electrochemical biosensors.
    Thota R; Ganesh V
    Analyst; 2014 Sep; 139(18):4661-72. PubMed ID: 25051246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on copper-titanate intercalation materials for amperometric sensor.
    Tong S; Jin H; Zheng D; Wang W; Li X; Xu Y; Song W
    Biosens Bioelectron; 2009 Apr; 24(8):2404-9. PubMed ID: 19157847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability.
    Liu M; Liu R; Chen W
    Biosens Bioelectron; 2013 Jul; 45():206-12. PubMed ID: 23500365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide microsensor integrated into a Sensing Cell Culture Flask microsystem using direct oxidation for cell culture application.
    Flamm H; Kieninger J; Weltin A; Urban GA
    Biosens Bioelectron; 2015 Mar; 65():354-9. PubMed ID: 25461181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and microfabrication strategies for remotely operated smart chemical sensors: application of anodic stripping coulometry to calibration-free measurements of copper and mercury.
    Marei MM; Roussel TJ; Keynton RS; Baldwin RP
    Anal Chim Acta; 2013 Nov; 803():47-55. PubMed ID: 24216196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.
    Inoue J; Kaneta T; Imasaka T
    Electrophoresis; 2012 Sep; 33(17):2743-7. PubMed ID: 22965720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of superoxide anions in HeLa cells by using two enzyme-free sensors prepared from ZIF-8-derived carbon nanomaterials.
    Li Y; Zhang H; Cai X; Zhao H; Magdassi S; Lan M
    Mikrochim Acta; 2019 May; 186(6):370. PubMed ID: 31119470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
    Yu ZG; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex.
    Mello LD; Pereira RM; Sawaya AC; Eberlin MN; Kubota LT
    J Pharm Biomed Anal; 2007 Dec; 45(5):706-13. PubMed ID: 17881180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva.
    Ye D; Liang G; Li H; Luo J; Zhang S; Chen H; Kong J
    Talanta; 2013 Nov; 116():223-30. PubMed ID: 24148397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum.
    Emran MY; Shenashen MA; El Sabagh A; Selim MM; El-Safty SA
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112228. PubMed ID: 34839049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensitive enzymeless sensor for hydrogen peroxide based on the polynucleotide-templated silver nanoclusters/graphene modified electrode.
    Xia Y; Li W; Wang M; Nie Z; Deng C; Yao S
    Talanta; 2013 Mar; 107():55-60. PubMed ID: 23598192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation.
    Long M; Tan L; Liu H; He Z; Tang A
    Biosens Bioelectron; 2014 Sep; 59():243-50. PubMed ID: 24732602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.