These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 24721613)

  • 1. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.
    Gittens RA; Olivares-Navarrete R; Schwartz Z; Boyan BD
    Acta Biomater; 2014 Aug; 10(8):3363-71. PubMed ID: 24721613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration.
    Rao PJ; Pelletier MH; Walsh WR; Mobbs RJ
    Orthop Surg; 2014 May; 6(2):81-9. PubMed ID: 24890288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits.
    Salou L; Hoornaert A; Louarn G; Layrolle P
    Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface treatments of titanium dental implants for rapid osseointegration.
    Le Guéhennec L; Soueidan A; Layrolle P; Amouriq Y
    Dent Mater; 2007 Jul; 23(7):844-54. PubMed ID: 16904738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification Techniques to Enhance Osseointegration of Spinal Implants.
    Possley D; Baker E; Baker K; Khalil JG
    J Am Acad Orthop Surg; 2020 Nov; 28(22):e988-e994. PubMed ID: 32868701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of surface roughness in promoting osteointegration].
    Nasatzky E; Gultchin J; Schwartz Z
    Refuat Hapeh Vehashinayim (1993); 2003 Jul; 20(3):8-19, 98. PubMed ID: 14515625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function.
    Choi SM; Park JW
    J Biomed Mater Res A; 2018 Dec; 106(12):3009-3020. PubMed ID: 30192064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of orthopedic implant structure on adjacent bone density and on stability.
    Likibi F; Chabot G; Assad M; Rivard CH
    Am J Orthop (Belle Mead NJ); 2008 Apr; 37(4):E78-83. PubMed ID: 18535685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-scale modification of titanium implant surfaces to enhance osseointegration.
    Souza JCM; Sordi MB; Kanazawa M; Ravindran S; Henriques B; Silva FS; Aparicio C; Cooper LF
    Acta Biomater; 2019 Aug; 94():112-131. PubMed ID: 31128320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Response to Nanosurface Modification on Metallic Biomaterials.
    Capellato P; Camargo SEA; Sachs D
    Curr Osteoporos Rep; 2020 Dec; 18(6):790-795. PubMed ID: 33085001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration.
    Hasegawa M; Saruta J; Hirota M; Taniyama T; Sugita Y; Kubo K; Ishijima M; Ikeda T; Maeda H; Ogawa T
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans.
    Gurzawska K; Svava R; Jørgensen NR; Gotfredsen K
    J Biomed Nanotechnol; 2012 Dec; 8(6):1012-24. PubMed ID: 23030010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.
    Feller L; Jadwat Y; Khammissa RA; Meyerov R; Schechter I; Lemmer J
    Biomed Res Int; 2015; 2015():171945. PubMed ID: 25767803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets.
    Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ
    J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic response of human MSCs and osteoblasts to hydrophilic and hydrophobic nanostructured titanium implant surfaces.
    Lotz EM; Olivares-Navarrete R; Berner S; Boyan BD; Schwartz Z
    J Biomed Mater Res A; 2016 Dec; 104(12):3137-3148. PubMed ID: 27474858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diatom-Inspired Silica Nanostructure Coatings with Controllable Microroughness Using an Engineered Mussel Protein Glue to Accelerate Bone Growth on Titanium-Based Implants.
    Jo YK; Choi BH; Kim CS; Cha HJ
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29068546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization.
    Ma QL; Zhao LZ; Liu RR; Jin BQ; Song W; Wang Y; Zhang YS; Chen LH; Zhang YM
    Biomaterials; 2014 Dec; 35(37):9853-9867. PubMed ID: 25201737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effectiveness of biodegradable instrumentation in the treatment of spinal fractures.
    Koutserimpas C; Alpantaki K; Chatzinikolaidou M; Chlouverakis G; Dohm M; Hadjipavlou AG
    Injury; 2018 Dec; 49(12):2111-2120. PubMed ID: 30526920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.
    Bosshardt DD; Chappuis V; Buser D
    Periodontol 2000; 2017 Feb; 73(1):22-40. PubMed ID: 28000277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.