These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24721662)

  • 21. Effect of loading rate and oxygen supply on nitrification in a non-porous membrane biofilm reactor.
    Hwang JH; Cicek N; Oleszkiewicz J
    Water Res; 2009 Jul; 43(13):3301-7. PubMed ID: 19473684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor.
    Tian HL; Zhao JY; Zhang HY; Chi CQ; Li BA; Wu XL
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3279-90. PubMed ID: 25431009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm.
    Downing LS; Nerenberg R
    Biotechnol Bioeng; 2008 Dec; 101(6):1193-204. PubMed ID: 18767185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison study on the performance of two different gas-permeable membranes used in a membrane-aerated biofilm reactor.
    Wu Y; Wu Z; Chu H; Li J; Ngo HH; Guo W; Zhang N; Zhang H
    Sci Total Environ; 2019 Mar; 658():1219-1227. PubMed ID: 30677984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term operation of membrane biofilm reactors for nitrogen removal with autotrophic bacteria.
    Hwang JH; Cicek N; Oleszkiewicz JA
    Water Sci Technol; 2009; 60(9):2405-12. PubMed ID: 19901473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the effects of intermittent aeration on the performance of nitrifying membrane-aerated biofilm reactors.
    Elad T; Hally MP; Domingo-Félez C; Knoop O; Drewes JE; Valverde-Pérez B; Smets BF
    Sci Total Environ; 2023 Sep; 891():164329. PubMed ID: 37236447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater.
    Li T; Liu J; Bai R; Wong FS
    Environ Sci Technol; 2008 Mar; 42(6):2099-104. PubMed ID: 18409643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Looking deeper into the effects of scouring and aeration on membrane aerated biofilms: Analysis of nitrogen conversion, oxygen profiles and nitrous oxide emissions.
    Bunse P; Pidde AV; Lackner S
    Water Res; 2024 May; 254():121400. PubMed ID: 38457946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of eukaryotic predation on nitrifying MABR biofilms.
    Kim B; Nerenberg R
    Water Res; 2022 Feb; 209():117911. PubMed ID: 34896809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the optimal transmembrane gas pressure for nitrification in membrane-aerated biofilm reactors based on oxygen profile analysis.
    Wang R; Xiao F; Wang Y; Lewandowski Z
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7699-711. PubMed ID: 27170321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements.
    Syron E; Casey E
    Environ Sci Technol; 2008 Mar; 42(6):1833-44. PubMed ID: 18409602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater.
    Celmer D; Oleszkiewicz JA; Cicek N
    Water Res; 2008 Jun; 42(12):3057-65. PubMed ID: 18396310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor.
    Flores-Alsina X; Uri-Carreno N; Nielsen PH; Gernaey KV
    Sci Total Environ; 2023 Jan; 856(Pt 1):158980. PubMed ID: 36174687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. COD and nitrogen removal by biofilms growing on gas permeable membranes.
    Semmens MJ; Dahm K; Shanahan J; Christianson A
    Water Res; 2003 Nov; 37(18):4343-50. PubMed ID: 14511704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth, structure and oxygen penetration in particle supported autotrophic biofilms.
    Boessmann M; Neu TR; Horn H; Hempel DC
    Water Sci Technol; 2004; 49(11-12):371-7. PubMed ID: 15303764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13.
    Misiak K; Casey E; Murphy CD
    Water Res; 2011 May; 45(11):3512-20. PubMed ID: 21536315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor.
    Li T; Bai R; Ohandja DG; Liu J
    Biodegradation; 2009 Jul; 20(4):569-80. PubMed ID: 19137403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous oxidation of ammonium and tetracycline in a membrane aerated biofilm reactor.
    Taşkan B; Casey E; Hasar H
    Sci Total Environ; 2019 Sep; 682():553-560. PubMed ID: 31128369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR).
    Sanchez-Huerta C; Fortunato L; Leiknes T; Hong PY
    J Hazard Mater; 2022 Jun; 432():128698. PubMed ID: 35349844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.