These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24721693)

  • 1. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.
    Narin B; Ozyörük Y; Ulas A
    J Hazard Mater; 2014 May; 273():44-52. PubMed ID: 24721693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical prediction of steady-state detonation properties of condensed-phase explosives.
    Cengiz F; Ulas A
    J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations.
    Zhakhovsky VV; Budzevich MM; Landerville AC; Oleynik II; White CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033312. PubMed ID: 25314569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.
    Bjelovuk ID; Jaramaz S; Mickovic D
    Sci Justice; 2012 Mar; 52(1):20-4. PubMed ID: 22325907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock and detonation properties of solid explosives with gaseous products.
    Abdulazeem MS
    J Hazard Mater; 2010 May; 177(1-3):372-6. PubMed ID: 20045247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detonation temperature of high explosives from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2006 Oct; 137(3):1303-8. PubMed ID: 16806689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study of the evolution of the blast wave shape in tunnels.
    Benselama AM; William-Louis MJ; Monnoyer F; Proust C
    J Hazard Mater; 2010 Sep; 181(1-3):609-16. PubMed ID: 20542372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method to assess detonation temperature without using any experimental data and computer code.
    Keshavarz MH; Nazari HR
    J Hazard Mater; 2006 May; 133(1-3):129-34. PubMed ID: 16297533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical study on the thermal initiation of a confined explosive in 2-D geometry.
    Aydemir E; Ulas A
    J Hazard Mater; 2011 Feb; 186(1):396-400. PubMed ID: 21130568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes.
    Wang G; Gong X; Liu Y; Du H; Xu X; Xiao H
    J Hazard Mater; 2010 May; 177(1-3):703-10. PubMed ID: 20064687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae.
    Poludnenko AY; Chambers J; Ahmed K; Gamezo VN; Taylor BD
    Science; 2019 Nov; 366(6465):. PubMed ID: 31672866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer code to predict the heat of explosion of high energy materials.
    Muthurajan H; Sivabalan R; Pon Saravanan N; Talawar MB
    J Hazard Mater; 2009 Jan; 161(2-3):714-7. PubMed ID: 18513863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials.
    Muthurajan H; Sivabalan R; Talawar MB; Asthana SN
    J Hazard Mater; 2004 Aug; 112(1-2):17-33. PubMed ID: 15225927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of large-scale detonation tests in the RUT facility by the LES model.
    Zbikowski M; Makarov D; Molkov V
    J Hazard Mater; 2010 Sep; 181(1-3):949-56. PubMed ID: 20541862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of microscale energetic residues in saturated porous media: visualization and quantification at the pore-scale by spectral confocal microscopy.
    Wang C; Lazouskaya V; Fuller ME; Caplan JL; Schaefer CE; Jin Y
    Environ Sci Technol; 2011 Oct; 45(19):8352-8. PubMed ID: 21861475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.