These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24721766)

  • 1. Window size impact in human activity recognition.
    Banos O; Galvez JM; Damas M; Pomares H; Rojas I
    Sensors (Basel); 2014 Apr; 14(4):6474-99. PubMed ID: 24721766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Med Eng Phys; 2015 Jul; 37(7):705-11. PubMed ID: 25983067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive spectral window sizes for extraction of diagnostic features from optical spectra.
    Kan CW; Lee AY; Nieman LT; Sokolov K; Markey MK
    J Biomed Opt; 2010; 15(4):047012. PubMed ID: 20799843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors.
    Dehghani A; Sarbishei O; Glatard T; Shihab E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors.
    Wang G; Li Q; Wang L; Wang W; Wu M; Liu T
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29912174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method for Sensor-Based Activity Recognition in Missing Data Scenario.
    Hossain T; Ahad MAR; Inoue S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition.
    Huang J; Lin S; Wang N; Dai G; Xie Y; Zhou J
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):292-299. PubMed ID: 30969934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Segmentation Scheme for Knowledge Discovery in Human Activity Spotting.
    Uslu G; Baydere S
    IEEE Trans Cybern; 2022 Jul; 52(7):5668-5681. PubMed ID: 35015659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.
    Chrysostomou C; Seker H; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4955-8. PubMed ID: 22255450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SlideAugment: A Simple Data Processing Method to Enhance Human Activity Recognition Accuracy Based on WiFi.
    Li J; Yin K; Tang C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical reflections on the currently leading definition of sustainable employability.
    Fleuren BPI; de Grip A; Jansen NWH; Kant I; Zijlstra FRH
    Scand J Work Environ Health; 2016 Jun; 42(6):557-560. PubMed ID: 27548816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multi-Window Majority Voting Strategy to Improve Hand Gesture Recognition Accuracies Using Electromyography Signal.
    Wahid MF; Tafreshi R; Langari R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):427-436. PubMed ID: 31870989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring techniques for vision based human activity recognition: methods, systems, and evaluation.
    Xu X; Tang J; Zhang X; Liu X; Zhang H; Qiu Y
    Sensors (Basel); 2013 Jan; 13(2):1635-50. PubMed ID: 23353144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Human Activity Recognition: A Hierarchical Feature Selection Framework.
    Wang A; Chen G; Wu X; Liu L; An N; Chang CY
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining multi-scale composite windows with hierarchical smoothing strategy for fingerprint orientation field computation.
    Li H; Wang T; Tang Y; Wu J; Yu P; Guo L; Chen J; Zhang Y
    Biomed Eng Online; 2018 Oct; 17(1):136. PubMed ID: 30285765
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.