BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24721906)

  • 21. Transposon mutagenesis in mice.
    Largaespada DA
    Methods Mol Biol; 2009; 530():379-90. PubMed ID: 19266336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells.
    Gogol-Döring A; Ammar I; Gupta S; Bunse M; Miskey C; Chen W; Uckert W; Schulz TF; Izsvák Z; Ivics Z
    Mol Ther; 2016 Mar; 24(3):592-606. PubMed ID: 26755332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retroviral insertional mutagenesis: past, present and future.
    Uren AG; Kool J; Berns A; van Lohuizen M
    Oncogene; 2005 Nov; 24(52):7656-72. PubMed ID: 16299527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system.
    Dupuy AJ; Akagi K; Largaespada DA; Copeland NG; Jenkins NA
    Nature; 2005 Jul; 436(7048):221-6. PubMed ID: 16015321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution genome-wide mapping of transposon integration in mammals.
    Yant SR; Wu X; Huang Y; Garrison B; Burgess SM; Kay MA
    Mol Cell Biol; 2005 Mar; 25(6):2085-94. PubMed ID: 15743807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery.
    Moriarity BS; Largaespada DA
    Curr Opin Genet Dev; 2015 Feb; 30():66-72. PubMed ID: 26051241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer gene discovery: exploiting insertional mutagenesis.
    Ranzani M; Annunziato S; Adams DJ; Montini E
    Mol Cancer Res; 2013 Oct; 11(10):1141-58. PubMed ID: 23928056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses.
    Derse D; Crise B; Li Y; Princler G; Lum N; Stewart C; McGrath CF; Hughes SH; Munroe DJ; Wu X
    J Virol; 2007 Jun; 81(12):6731-41. PubMed ID: 17409138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration Mapping of piggyBac-Mediated CD19 Chimeric Antigen Receptor T Cells Analyzed by Novel Tagmentation-Assisted PCR.
    Hamada M; Nishio N; Okuno Y; Suzuki S; Kawashima N; Muramatsu H; Tsubota S; Wilson MH; Morita D; Kataoka S; Ichikawa D; Murakami N; Taniguchi R; Suzuki K; Kojima D; Sekiya Y; Nishikawa E; Narita A; Hama A; Kojima S; Nakazawa Y; Takahashi Y
    EBioMedicine; 2018 Aug; 34():18-26. PubMed ID: 30082227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool.
    Kim A; Pyykko I
    Mol Cell Biochem; 2011 Aug; 354(1-2):301-9. PubMed ID: 21516337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site.
    Dorssers LC; van Agthoven T; Dekker A; van Agthoven TL; Kok EM
    Mol Endocrinol; 1993 Jul; 7(7):870-8. PubMed ID: 8413311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns.
    Laufs S; Nagy KZ; Giordano FA; Hotz-Wagenblatt A; Zeller WJ; Fruehauf S
    Mol Ther; 2004 Nov; 10(5):874-81. PubMed ID: 15509505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suicidal autointegration of sleeping beauty and piggyBac transposons in eukaryotic cells.
    Wang Y; Wang J; Devaraj A; Singh M; Jimenez Orgaz A; Chen JX; Selbach M; Ivics Z; Izsvák Z
    PLoS Genet; 2014 Mar; 10(3):e1004103. PubMed ID: 24625543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.
    Grabundzija I; Izsvák Z; Ivics Z
    Methods Mol Biol; 2011; 738():69-85. PubMed ID: 21431720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells.
    Woodard LE; Li X; Malani N; Kaja A; Hice RH; Atkinson PW; Bushman FD; Craig NL; Wilson MH
    PLoS One; 2012; 7(11):e42666. PubMed ID: 23166581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology.
    O'Donnell KA
    Curr Opin Genet Dev; 2018 Apr; 49():85-94. PubMed ID: 29587177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
    Mitchell RS; Beitzel BF; Schroder AR; Shinn P; Chen H; Berry CC; Ecker JR; Bushman FD
    PLoS Biol; 2004 Aug; 2(8):E234. PubMed ID: 15314653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration target site selection for retroviruses and transposable elements.
    Wu X; Burgess SM
    Cell Mol Life Sci; 2004 Oct; 61(19-20):2588-96. PubMed ID: 15526164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors.
    Koudijs MJ; Klijn C; van der Weyden L; Kool J; ten Hoeve J; Sie D; Prasetyanti PR; Schut E; Kas S; Whipp T; Cuppen E; Wessels L; Adams DJ; Jonkers J
    Genome Res; 2011 Dec; 21(12):2181-9. PubMed ID: 21852388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration site selection by retroviruses and transposable elements in eukaryotes.
    Sultana T; Zamborlini A; Cristofari G; Lesage P
    Nat Rev Genet; 2017 May; 18(5):292-308. PubMed ID: 28286338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.