These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 24721979)
1. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices. King B; Panchapakesan B Nanotechnology; 2014 May; 25(17):175201. PubMed ID: 24721979 [TBL] [Abstract][Full Text] [Related]
2. Aligned Carbon Nanotube Thin Films from Liquid Crystal Polyelectrolyte Inks. Tune DD; Blanch AJ; Shearer CJ; Moore KE; Pfohl M; Shapter JG; Flavel BS ACS Appl Mater Interfaces; 2015 Nov; 7(46):25857-64. PubMed ID: 26511159 [TBL] [Abstract][Full Text] [Related]
3. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Jang S; Jang H; Lee Y; Suh D; Baik S; Hong BH; Ahn JH Nanotechnology; 2010 Oct; 21(42):425201. PubMed ID: 20858937 [TBL] [Abstract][Full Text] [Related]
4. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Kanungo M; Lu H; Malliaras GG; Blanchet GB Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624 [TBL] [Abstract][Full Text] [Related]
5. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. Wang C; Zhang J; Zhou C ACS Nano; 2010 Dec; 4(12):7123-32. PubMed ID: 21062091 [TBL] [Abstract][Full Text] [Related]
6. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask. Pillai SK; Chan-Park MB ACS Appl Mater Interfaces; 2012 Dec; 4(12):7047-54. PubMed ID: 23194001 [TBL] [Abstract][Full Text] [Related]
7. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. Sangwan VK; Ortiz RP; Alaboson JM; Emery JD; Bedzyk MJ; Lauhon LJ; Marks TJ; Hersam MC ACS Nano; 2012 Aug; 6(8):7480-8. PubMed ID: 22783918 [TBL] [Abstract][Full Text] [Related]
8. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Sarker BK; Kang N; Khondaker SI Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657 [TBL] [Abstract][Full Text] [Related]
9. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107 [TBL] [Abstract][Full Text] [Related]
10. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites. Fan X; King BC; Loomis J; Campo EM; Hegseth J; Cohn RW; Terentjev E; Panchapakesan B Nanotechnology; 2014 Sep; 25(35):355501. PubMed ID: 25116197 [TBL] [Abstract][Full Text] [Related]
12. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386 [TBL] [Abstract][Full Text] [Related]
13. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278 [TBL] [Abstract][Full Text] [Related]
14. A facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors. Gui H; Chen H; Khripin CY; Liu B; Fagan JA; Zhou C; Zheng M Nanoscale; 2016 Feb; 8(6):3467-73. PubMed ID: 26796507 [TBL] [Abstract][Full Text] [Related]
15. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Hirotani J; Ohno Y Top Curr Chem (Cham); 2019 Jan; 377(1):3. PubMed ID: 30600416 [TBL] [Abstract][Full Text] [Related]
16. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. De S; Lyons PE; Sorel S; Doherty EM; King PJ; Blau WJ; Nirmalraj PN; Boland JJ; Scardaci V; Joimel J; Coleman JN ACS Nano; 2009 Mar; 3(3):714-20. PubMed ID: 19227998 [TBL] [Abstract][Full Text] [Related]
17. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition. Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966 [TBL] [Abstract][Full Text] [Related]
18. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? De S; Coleman JN ACS Nano; 2010 May; 4(5):2713-20. PubMed ID: 20384321 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Saeki A; Koizumi Y; Aida T; Seki S Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381 [TBL] [Abstract][Full Text] [Related]
20. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. He X; Gao W; Xie L; Li B; Zhang Q; Lei S; Robinson JM; Hároz EH; Doorn SK; Wang W; Vajtai R; Ajayan PM; Adams WW; Hauge RH; Kono J Nat Nanotechnol; 2016 Jul; 11(7):633-8. PubMed ID: 27043199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]