These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24722007)

  • 21. Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots.
    Dong L; Sugunan A; Hu J; Zhou S; Li S; Popov S; Toprak MS; Friberg AT; Muhammed M
    Appl Opt; 2013 Jan; 52(1):105-9. PubMed ID: 23292381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Photoluminescence of Colloidal Quantum Dots During Gas Exposure-The Role of Water and Reactive Atomic Layer Deposition Precursors.
    Kuhs J; Werbrouck A; Zawacka N; Drijvers E; Smet PF; Hens Z; Detavernier C
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26277-26287. PubMed ID: 31260622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions.
    Greytak AB; Allen PM; Liu W; Zhao J; Young ER; Popović Z; Walker B; Nocera DG; Bawendi MG
    Chem Sci; 2012 Jun; 3(6):2028-2034. PubMed ID: 24932403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All solution processed low turn-on voltage near infrared LEDs based on core-shell PbS-CdS quantum dots with inverted device structure.
    Sanchez RS; Binetti E; Torre JA; Garcia-Belmonte G; Striccoli M; Mora-Sero I
    Nanoscale; 2014 Aug; 6(15):8551-5. PubMed ID: 24970552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced photoluminescence of corrugated Al
    Bai Z; Hao L; Zhang Z; Huang Z; Qin S
    Nanotechnology; 2017 May; 28(20):205206. PubMed ID: 28445168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled placement of colloidal quantum dots in sub-15 nm clusters.
    Manfrinato VR; Wanger DD; Strasfeld DB; Han HS; Marsili F; Arrieta JP; Mentzel TS; Bawendi MG; Berggren KK
    Nanotechnology; 2013 Mar; 24(12):125302. PubMed ID: 23466608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation.
    Orfield NJ; McBride JR; Wang F; Buck MR; Keene JD; Reid KR; Htoon H; Hollingsworth JA; Rosenthal SJ
    ACS Nano; 2016 Feb; 10(2):1960-8. PubMed ID: 26849531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CdSe/ZnS core/shell quantum dot sensitization of low index TiO(2) single crystal surfaces.
    Sambur JB; Parkinson BA
    J Am Chem Soc; 2010 Feb; 132(7):2130-1. PubMed ID: 20121191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment.
    Pu C; Peng X
    J Am Chem Soc; 2016 Jul; 138(26):8134-42. PubMed ID: 27312799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shell Thickness Engineering Significantly Boosts the Photocatalytic H
    Wang P; Wang M; Zhang J; Li C; Xu X; Jin Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35712-35720. PubMed ID: 28952304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoresist Contact Patterning of Quantum Dot Films.
    Keum H; Jiang Y; Park JK; Flanagan JC; Shim M; Kim S
    ACS Nano; 2018 Oct; 12(10):10024-10031. PubMed ID: 30247027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots.
    Shen H; Lin Q; Wang H; Qian L; Yang Y; Titov A; Hyvonen J; Zheng Y; Li LS
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12011-6. PubMed ID: 24191742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Colloidal Stabilization Mechanism toward Improved Photoluminescence and Stability of CdSe/CdS Core/Shell Quantum Dots.
    Wu F; Zhang Y; Zhang Z; Li G; Li M; Lan X; Sun T; Jiang Y
    Langmuir; 2017 Jul; 33(28):7124-7129. PubMed ID: 28661693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ordered fabrication of luminescent multilayered thin films of CdSe quantum dots.
    Vassiltsova OV; Panda SK; Zhao Z; Carpenter MA; Petrukhina MA
    Dalton Trans; 2009 Nov; (43):9426-32. PubMed ID: 19859597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.
    Zhao H; Liang H; Gonfa BA; Chaker M; Ozaki T; Tijssen P; Vidal F; Ma D
    Nanoscale; 2014 Jan; 6(1):215-25. PubMed ID: 24132400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability.
    Calzada R; Thompson CM; Westmoreland DE; Edme K; Weiss EA
    Chem Mater; 2016 Sep; 28(18):6716-6723. PubMed ID: 28260836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.
    Im SH; Lee YH; Seok SI; Kim SW; Kim SW
    Langmuir; 2010 Dec; 26(23):18576-80. PubMed ID: 21069989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots.
    Kim S; Noh J; Choi H; Ha H; Song JH; Shim HC; Jang J; Beard MC; Jeong S
    J Phys Chem Lett; 2014 Nov; 5(22):4002-7. PubMed ID: 26276485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.