These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 24722188)

  • 1. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.
    Corominas R; Yang X; Lin GN; Kang S; Shen Y; Ghamsari L; Broly M; Rodriguez M; Tam S; Wanamaker SA; Fan C; Yi S; Tasan M; Lemmens I; Kuang X; Zhao N; Malhotra D; Michaelson JJ; Vacic V; Calderwood MA; Roth FP; Tavernier J; Horvath S; Salehi-Ashtiani K; Korkin D; Sebat J; Hill DE; Hao T; Vidal M; Iakoucheva LM
    Nat Commun; 2014 Apr; 5():3650. PubMed ID: 24722188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing.
    Ghadie MA; Lambourne L; Vidal M; Xia Y
    PLoS Comput Biol; 2017 Aug; 13(8):e1005717. PubMed ID: 28846689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo missense variants disrupting protein-protein interactions affect risk for autism through gene co-expression and protein networks in neuronal cell types.
    Chen S; Wang J; Cicek E; Roeder K; Yu H; Devlin B
    Mol Autism; 2020 Oct; 11(1):76. PubMed ID: 33032641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting protein interaction network perturbation by alternative splicing with semi-supervised learning.
    Narykov O; Johnson NT; Korkin D
    Cell Rep; 2021 Nov; 37(8):110045. PubMed ID: 34818539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.
    Yang X; Coulombe-Huntington J; Kang S; Sheynkman GM; Hao T; Richardson A; Sun S; Yang F; Shen YA; Murray RR; Spirohn K; Begg BE; Duran-Frigola M; MacWilliams A; Pevzner SJ; Zhong Q; Wanamaker SA; Tam S; Ghamsari L; Sahni N; Yi S; Rodriguez MD; Balcha D; Tan G; Costanzo M; Andrews B; Boone C; Zhou XJ; Salehi-Ashtiani K; Charloteaux B; Chen AA; Calderwood MA; Aloy P; Roth FP; Hill DE; Iakoucheva LM; Xia Y; Vidal M
    Cell; 2016 Feb; 164(4):805-17. PubMed ID: 26871637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-length isoform transcriptome of the developing human brain provides further insights into autism.
    Chau KK; Zhang P; Urresti J; Amar M; Pramod AB; Chen J; Thomas A; Corominas R; Lin GN; Iakoucheva LM
    Cell Rep; 2021 Aug; 36(9):109631. PubMed ID: 34469739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetics of autism.
    Muhle R; Trentacoste SV; Rapin I
    Pediatrics; 2004 May; 113(5):e472-86. PubMed ID: 15121991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies.
    Murtaza N; Cheng AA; Brown CO; Meka DP; Hong S; Uy JA; El-Hajjar J; Pipko N; Unda BK; Schwanke B; Xing S; Thiruvahindrapuram B; Engchuan W; Trost B; Deneault E; Calderon de Anda F; Doble BW; Ellis J; Anagnostou E; Bader GD; Scherer SW; Lu Y; Singh KK
    Cell Rep; 2022 Nov; 41(8):111678. PubMed ID: 36417873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole Exome Sequencing Identifies Novel De Novo Variants Interacting with Six Gene Networks in Autism Spectrum Disorder.
    Kim N; Kim KH; Lim WJ; Kim J; Kim SA; Yoo HJ
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33374967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.
    Correia C; Oliveira G; Vicente AM
    PLoS One; 2014; 9(11):e112399. PubMed ID: 25409314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
    Voineagu I; Wang X; Johnston P; Lowe JK; Tian Y; Horvath S; Mill J; Cantor RM; Blencowe BJ; Geschwind DH
    Nature; 2011 May; 474(7351):380-4. PubMed ID: 21614001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential role of a retrotransposed gene and a long noncoding RNA in regulating an X-linked chromatin gene (KDM5C): Novel epigenetic mechanism in autism.
    Talebizadeh Z; Shah A; DiTacchio L
    Autism Res; 2019 Jul; 12(7):1007-1021. PubMed ID: 31087518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism.
    Weyn-Vanhentenryck SM; Mele A; Yan Q; Sun S; Farny N; Zhang Z; Xue C; Herre M; Silver PA; Zhang MQ; Krainer AR; Darnell RB; Zhang C
    Cell Rep; 2014 Mar; 6(6):1139-1152. PubMed ID: 24613350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exome sequencing identifies de novo splicing variant in XRCC6 in sporadic case of autism.
    Sjaarda CP; Wood S; McNaughton AJM; Taylor S; Hudson ML; Liu X; Guerin A; Ayub M
    J Hum Genet; 2020 Mar; 65(3):287-296. PubMed ID: 31827253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.
    Leblond CS; Heinrich J; Delorme R; Proepper C; Betancur C; Huguet G; Konyukh M; Chaste P; Ey E; Rastam M; Anckarsäter H; Nygren G; Gillberg IC; Melke J; Toro R; Regnault B; Fauchereau F; Mercati O; Lemière N; Skuse D; Poot M; Holt R; Monaco AP; Järvelä I; Kantojärvi K; Vanhala R; Curran S; Collier DA; Bolton P; Chiocchetti A; Klauck SM; Poustka F; Freitag CM; Waltes R; Kopp M; Duketis E; Bacchelli E; Minopoli F; Ruta L; Battaglia A; Mazzone L; Maestrini E; Sequeira AF; Oliveira B; Vicente A; Oliveira G; Pinto D; Scherer SW; Zelenika D; Delepine M; Lathrop M; Bonneau D; Guinchat V; Devillard F; Assouline B; Mouren MC; Leboyer M; Gillberg C; Boeckers TM; Bourgeron T
    PLoS Genet; 2012 Feb; 8(2):e1002521. PubMed ID: 22346768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.
    Treutlein B; Gokce O; Quake SR; Südhof TC
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):E1291-9. PubMed ID: 24639501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants.
    Siu MT; Butcher DT; Turinsky AL; Cytrynbaum C; Stavropoulos DJ; Walker S; Caluseriu O; Carter M; Lou Y; Nicolson R; Georgiades S; Szatmari P; Anagnostou E; Scherer SW; Choufani S; Brudno M; Weksberg R
    Clin Epigenetics; 2019 Jul; 11(1):103. PubMed ID: 31311581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing de novo autism risk variants with calibrated gene- and variant-scoring models.
    Jiang Y; Urresti J; Pagel KA; Pramod AB; Iakoucheva LM; Radivojac P
    Hum Genet; 2022 Oct; 141(10):1595-1613. PubMed ID: 34549350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein interaction network of alternatively spliced NudCD1 isoforms.
    Asselin-Mullen P; Chauvin A; Dubois ML; Drissi R; Lévesque D; Boisvert FM
    Sci Rep; 2017 Oct; 7(1):12987. PubMed ID: 29021621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression studies in autism: moving from the genome to the transcriptome and beyond.
    Voineagu I
    Neurobiol Dis; 2012 Jan; 45(1):69-75. PubMed ID: 21839838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.