These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2472234)

  • 1. Development of tectal neurons in the perciform teleost Haplochromis burtoni. A Golgi study.
    Wilm C; Fritzsch B
    Brain Res Dev Brain Res; 1989 May; 47(1):35-52. PubMed ID: 2472234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Golgi study of goldfish optic tectum.
    Meek J; Schellart NA
    J Comp Neurol; 1978 Nov; 182(1):89-122. PubMed ID: 81216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of the superficial layers in the rat superior colliculus: a study with Golgi-Cox and Klüver-Barrera techniques.
    Warton SS; Jones DG
    Exp Brain Res; 1985; 58(3):490-502. PubMed ID: 2408911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphology of neurons in rat tectal transplants as revealed by Golgi-Cox impregnation.
    Harvey AR; Warton SS
    Anat Embryol (Berl); 1986; 174(3):361-7. PubMed ID: 3766992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural organization of the optic tectum of Barbus meridionalis Risso. I. Inner strata (SPV, SAC and SGC).
    Miguel Hidalgo JJ; Lara J; Alonso JR; Aijón J
    J Hirnforsch; 1986; 27(1):19-27. PubMed ID: 2423582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate and deep layers of the macaque superior colliculus: a Golgi study.
    Ma TP; Cheng HW; Czech JA; Rafols JA
    J Comp Neurol; 1990 May; 295(1):92-110. PubMed ID: 1692855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic exposure to caffeine during early development increases dendritic spine and branch formation in midbrain optic tectum.
    Burgess JW; Monachello MP
    Brain Res; 1983 Jan; 282(2):123-9. PubMed ID: 6831235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish.
    Kaethner RJ; Stuermer CA
    J Neurobiol; 1997 Jun; 32(6):627-39. PubMed ID: 9183742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types, and synapses.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):149-73. PubMed ID: 7251937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Golgi-electron microscopic study of goldfish optic tectum. II. Quantitative aspects of synaptic organization.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):175-90. PubMed ID: 7251938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tectal projection neurons to the retinopetal nucleus in the filefish.
    Uchiyama H; Matsutani S; Ito H
    Brain Res; 1986 Mar; 369(1-2):260-6. PubMed ID: 3697743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal differentiation patterns in the optic tectum of the lizard Gallotia galloti.
    Báez J; Monzón-Mayor M; Yanes C; del Mar Romero-Alemán M; Francisco Arbelo-Galván J; Puelles L
    Brain Res; 2003 Jun; 975(1-2):48-65. PubMed ID: 12763592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY; Cline HT
    J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labelling study.
    Woodson W; Reiner A; Anderson K; Karten HJ
    J Comp Neurol; 1991 Mar; 305(3):470-88. PubMed ID: 1709956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Golgi and electron-microscopic golgi-GABA immunostaining study of the avian optic tectum.
    Tömböl T
    Acta Anat (Basel); 1998; 162(4):209-25. PubMed ID: 9831770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between tectal radial cells in the red-eared turtle, Pseudemys scripta elegans: an analysis of tectal modules.
    Schechter PB; Ulinski PS
    J Morphol; 1979 Oct; 162(1):17-36. PubMed ID: 228046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoarchitecture of the tectum mesencephali in two types of siluroid teleosts.
    Schroeder DM; Vanegas H
    J Comp Neurol; 1977 Oct; 175(3):287-300. PubMed ID: 903425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.