These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 24722625)

  • 1. Diffusive fingering in a precipitation reaction driven by autocatalysis.
    Tóth-Szeles E; Tóth Á; Horváth D
    Chem Commun (Camb); 2014 May; 50(42):5580-2. PubMed ID: 24722625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration-driven instability in the chlorite-tetrathionate reaction.
    Viranyi Z; Horvath D; Tóth A
    J Phys Chem A; 2006 Mar; 110(10):3614-8. PubMed ID: 16526642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.
    Bazant MZ
    Faraday Discuss; 2017 Jul; 199():423-463. PubMed ID: 28573280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic fingering instability induced by a precipitation reaction.
    Nagatsu Y; Ishii Y; Tada Y; De Wit A
    Phys Rev Lett; 2014 Jul; 113(2):024502. PubMed ID: 25062188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscosity-change-induced density fingering in polyelectrolytes.
    Rica T; Horváth D; Tóth A
    J Phys Chem B; 2008 Nov; 112(46):14593-6. PubMed ID: 18698719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern formation and self-organization in a simple precipitation system.
    Volford A; Izsák F; Ripszám M; Lagzi I
    Langmuir; 2007 Jan; 23(3):961-4. PubMed ID: 17240995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical autocatalysis driven by a bond-forming thiol-ene reaction.
    Bissette AJ; Odell B; Fletcher SP
    Nat Commun; 2014 Sep; 5():4607. PubMed ID: 25178358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts.
    Levitán D; D'Onofrio A
    Chaos; 2012 Sep; 22(3):037107. PubMed ID: 23020498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition.
    Hatch HW; Stillinger FH; Debenedetti PG
    J Chem Phys; 2010 Dec; 133(22):224502. PubMed ID: 21171686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical description of chiral autocatalysis.
    Micskei K; Póta G; Caglioti L; Palyi G
    J Phys Chem A; 2006 May; 110(18):5982-4. PubMed ID: 16671665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new universal law for the Liesegang pattern formation.
    Izsák F; Lagzi I
    J Chem Phys; 2005 May; 122(18):184707. PubMed ID: 15918747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells.
    Vasquez DA; De Wit A
    J Chem Phys; 2004 Jul; 121(2):935-41. PubMed ID: 15260625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric autocatalysis and its implications for the origin of homochirality.
    Blackmond DG
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5732-6. PubMed ID: 15067112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts.
    D'Hernoncourt J; De Wit A; Merkin JH
    J Chem Phys; 2007 Mar; 126(10):104504. PubMed ID: 17362072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagating fronts and morphological instabilities in a precipitation reaction.
    Dúzs B; Lagzi I; Szalai I
    Langmuir; 2014 May; 30(19):5460-5. PubMed ID: 24786494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heads and tails of buoyant autocatalytic balls.
    Rogers MC; Morris SW
    Chaos; 2012 Sep; 22(3):037110. PubMed ID: 23020501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spatial and temporal noise on a cubic-autocatalytic reaction-diffusion model.
    Gagnon JS; Hochberg D; Pérez-Mercader J
    Phys Rev E; 2017 Mar; 95(3-1):032106. PubMed ID: 28415318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.