These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 24722990)
1. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. Lopert P; Patel M J Biol Chem; 2014 May; 289(22):15611-20. PubMed ID: 24722990 [TBL] [Abstract][Full Text] [Related]
2. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. Lopert P; Day BJ; Patel M PLoS One; 2012; 7(11):e50683. PubMed ID: 23226354 [TBL] [Abstract][Full Text] [Related]
3. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804 [TBL] [Abstract][Full Text] [Related]
4. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Lopert P; Patel M Redox Biol; 2014; 2():667-72. PubMed ID: 24936441 [TBL] [Abstract][Full Text] [Related]
5. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. Drechsel DA; Patel M J Biol Chem; 2010 Sep; 285(36):27850-8. PubMed ID: 20558743 [TBL] [Abstract][Full Text] [Related]
6. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria. Ronchi JA; Francisco A; Passos LA; Figueira TR; Castilho RF J Biol Chem; 2016 Sep; 291(38):20173-87. PubMed ID: 27474736 [TBL] [Abstract][Full Text] [Related]
7. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Fisher-Wellman KH; Lin CT; Ryan TE; Reese LR; Gilliam LA; Cathey BL; Lark DS; Smith CD; Muoio DM; Neufer PD Biochem J; 2015 Apr; 467(2):271-80. PubMed ID: 25643703 [TBL] [Abstract][Full Text] [Related]
8. Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure. Smith CD; Schmidt CA; Lin CT; Fisher-Wellman KH; Neufer PD J Biol Chem; 2020 Nov; 295(48):16207-16216. PubMed ID: 32747443 [TBL] [Abstract][Full Text] [Related]
9. NADPH supply and the contribution of NAD(P) Figueira TR; Francisco A; Ronchi JA; Dos Santos GRRM; Santos WD; Treberg JR; Castilho RF Arch Biochem Biophys; 2021 Aug; 707():108934. PubMed ID: 34043997 [TBL] [Abstract][Full Text] [Related]
10. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
11. Alcohol induces mitochondrial redox imbalance in alveolar macrophages. Liang Y; Harris FL; Jones DP; Brown LAS Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Pannala VR; Dash RK Free Radic Biol Med; 2015 Jan; 78():42-55. PubMed ID: 25451645 [TBL] [Abstract][Full Text] [Related]
13. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Navarro CDC; Figueira TR; Francisco A; Dal'Bó GA; Ronchi JA; Rovani JC; Escanhoela CAF; Oliveira HCF; Castilho RF; Vercesi AE Free Radic Biol Med; 2017 Dec; 113():190-202. PubMed ID: 28964917 [TBL] [Abstract][Full Text] [Related]
14. NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice. Meimaridou E; Goldsworthy M; Chortis V; Fragouli E; Foster PA; Arlt W; Cox R; Metherell LA J Endocrinol; 2018 Jan; 236(1):13-28. PubMed ID: 29046340 [TBL] [Abstract][Full Text] [Related]
15. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Santos LRB; Muller C; de Souza AH; Takahashi HK; Spégel P; Sweet IR; Chae H; Mulder H; Jonas JC Mol Metab; 2017 Jun; 6(6):535-547. PubMed ID: 28580284 [TBL] [Abstract][Full Text] [Related]
16. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Korge P; Calmettes G; Weiss JN Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705 [TBL] [Abstract][Full Text] [Related]
17. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317 [TBL] [Abstract][Full Text] [Related]
18. Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II. Rao KNS; Shen X; Pardue S; Krzywanski DM Redox Biol; 2020 Sep; 36():101650. PubMed ID: 32763515 [TBL] [Abstract][Full Text] [Related]