BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24722994)

  • 21. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus.
    Cavalieri C; Biermann N; Vlasie MD; Einsle O; Merli A; Ferrari D; Rossi GL; Ubbink M
    Biochemistry; 2008 Jun; 47(25):6560-70. PubMed ID: 18512962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structures of MauG in complex with quinol and quinone MADH.
    Yukl ET; Jensen LM; Davidson VL; Wilmot CM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):738-43. PubMed ID: 23832199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.
    Yukl ET; Williamson HR; Higgins L; Davidson VL; Wilmot CM
    Biochemistry; 2013 Dec; 52(52):9447-55. PubMed ID: 24320950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG.
    Jensen LM; Meharenna YT; Davidson VL; Poulos TL; Hedman B; Wilmot CM; Sarangi R
    J Biol Inorg Chem; 2012 Dec; 17(8):1241-55. PubMed ID: 23053529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.
    Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL
    FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. Cofactor assembly and catalytic properties of recombinant enzyme expressed in Paracoccus denitrificans.
    Hothi P; Khadra KA; Combe JP; Leys D; Scrutton NS
    FEBS J; 2005 Nov; 272(22):5894-909. PubMed ID: 16279953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of intermediates in tryptophan tryptophylquinone enzymes.
    Davidson VL; Brooks HB; Graichen ME; Jones LH; Hyun YL
    Methods Enzymol; 1995; 258():176-90. PubMed ID: 8524149
    [No Abstract]   [Full Text] [Related]  

  • 34. Structure, function, and applications of tryptophan tryptophylquinone enzymes.
    Davidson VL
    Adv Exp Med Biol; 1999; 467():587-95. PubMed ID: 10721104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis.
    Yukl ET; Liu F; Krzystek J; Shin S; Jensen LM; Davidson VL; Wilmot CM; Liu A
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4569-73. PubMed ID: 23487750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis.
    Li X; Feng M; Wang Y; Tachikawa H; Davidson VL
    Biochemistry; 2006 Jan; 45(3):821-8. PubMed ID: 16411758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase.
    Chen LY; Mathews FS; Davidson VL; Huizinga EG; Vellieux FM; Duine JA; Hol WG
    FEBS Lett; 1991 Aug; 287(1-2):163-6. PubMed ID: 1879526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methylamine dehydrogenase: structure and function of electron transfer complexes.
    Davidson VL
    Biochem Soc Trans; 1999 Feb; 27(2):201-6. PubMed ID: 10093734
    [No Abstract]   [Full Text] [Related]  

  • 39. Structure and mechanism of tryptophylquinone enzymes.
    Davidson VL
    Bioorg Chem; 2005 Jun; 33(3):159-70. PubMed ID: 15888309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemistry. Remote enzyme microsurgery.
    Bollinger JM; Matthews ML
    Science; 2010 Mar; 327(5971):1337-8. PubMed ID: 20223975
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.