These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24723013)

  • 1. A carbon-coated TiO(2)(B) nanosheet composite for lithium ion batteries.
    Sun Z; Huang X; Muhler M; Schuhmann W; Ventosa E
    Chem Commun (Camb); 2014 May; 50(41):5506-9. PubMed ID: 24723013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries.
    Mao M; Mei L; Guo D; Wu L; Zhang D; Li Q; Wang T
    Nanoscale; 2014 Nov; 6(21):12350-3. PubMed ID: 25189818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.
    Luo C; Xu Y; Zhu Y; Liu Y; Zheng S; Liu Y; Langrock A; Wang C
    ACS Nano; 2013 Sep; 7(9):8003-10. PubMed ID: 23944942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries.
    Xie Q; Ma Y; Zeng D; Zhang X; Wang L; Yue G; Peng DL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19895-904. PubMed ID: 25350718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures.
    Zhang W; Zhou W; Wright JH; Kim YN; Liu D; Xiao X
    ACS Appl Mater Interfaces; 2014 May; 6(10):7292-300. PubMed ID: 24809928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High electrochemical performances of microsphere C-TiO₂ anode for sodium-ion battery.
    Oh SM; Hwang JY; Yoon CS; Lu J; Amine K; Belharouak I; Sun YK
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11295-301. PubMed ID: 24950122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-decorated Li₄Ti₅O₁₂/rutile TiO₂ mesoporous microspheres with nanostructures as high-performance anode materials in lithium-ion batteries.
    Gao L; Liu R; Hu H; Li G; Yu Y
    Nanotechnology; 2014 May; 25(17):175402. PubMed ID: 24722166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries.
    Etacheri V; Yourey JE; Bartlett BM
    ACS Nano; 2014 Feb; 8(2):1491-9. PubMed ID: 24446910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.
    Yi TF; Fang ZK; Xie Y; Zhu YR; Yang SY
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20205-13. PubMed ID: 25330170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage.
    Hao B; Yan Y; Wang X; Chen G
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6285-91. PubMed ID: 23742241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.
    Wang X; Yan Y; Hao B; Chen G
    ACS Appl Mater Interfaces; 2013 May; 5(9):3631-7. PubMed ID: 23597025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries.
    Xin X; Zhou X; Wu J; Yao X; Liu Z
    ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries.
    Wang J; Li L; Wong CL; Madhavi S
    Nanotechnology; 2012 Dec; 23(49):495401. PubMed ID: 23150071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.