These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1052 related articles for article (PubMed ID: 24723137)
1. Risk to pollinators from the use of chlorpyrifos in the United States. Cutler GC; Purdy J; Giesy JP; Solomon KR Rev Environ Contam Toxicol; 2014; 231():219-65. PubMed ID: 24723137 [TBL] [Abstract][Full Text] [Related]
2. Refined avian risk assessment for chlorpyrifos in the United States. Moore DR; Teed RS; Greer CD; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():163-217. PubMed ID: 24723136 [TBL] [Abstract][Full Text] [Related]
3. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States. Williams WM; Giddings JM; Purdy J; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():77-117. PubMed ID: 24723134 [TBL] [Abstract][Full Text] [Related]
4. Properties and uses of chlorpyrifos in the United States. Solomon KR; Williams WM; Mackay D; Purdy J; Giddings JM; Giesy JP Rev Environ Contam Toxicol; 2014; 231():13-34. PubMed ID: 24723132 [TBL] [Abstract][Full Text] [Related]
5. Risks to aquatic organisms from use of chlorpyrifos in the United States. Giddings JM; Williams WM; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():119-62. PubMed ID: 24723135 [TBL] [Abstract][Full Text] [Related]
6. Fate in the environment and long-range atmospheric transport of the organophosphorus insecticide, chlorpyrifos and its oxon. Mackay D; Giesy JP; Solomon KR Rev Environ Contam Toxicol; 2014; 231():35-76. PubMed ID: 24723133 [TBL] [Abstract][Full Text] [Related]
7. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the mid-southern United States. Stewart SD; Lorenz GM; Catchot AL; Gore J; Cook D; Skinner J; Mueller TC; Johnson DR; Zawislak J; Barber J Environ Sci Technol; 2014 Aug; 48(16):9762-9. PubMed ID: 25010122 [TBL] [Abstract][Full Text] [Related]
8. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Graham KK; Milbrath MO; Zhang Y; Baert N; McArt S; Isaacs R Sci Rep; 2022 May; 12(1):7189. PubMed ID: 35504929 [TBL] [Abstract][Full Text] [Related]
9. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Rolke D; Persigehl M; Peters B; Sterk G; Blenau W Ecotoxicology; 2016 Nov; 25(9):1691-1701. PubMed ID: 27650369 [TBL] [Abstract][Full Text] [Related]
10. Field cross-fostering and in vitro rearing demonstrate negative effects of both larval and adult exposure to a widely used fungicide in honey bees (Apis mellifera). Fisher A; DeGrandi-Hoffman G; Smith BH; Ozturk C; Kaftanoglu O; Fewell JH; Harrison JF Ecotoxicol Environ Saf; 2021 Jul; 217():112251. PubMed ID: 33905983 [TBL] [Abstract][Full Text] [Related]
11. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Requier F; Odoux JF; Tamic T; Moreau N; Henry M; Decourtye A; Bretagnolle V Ecol Appl; 2015 Jun; 25(4):881-90. PubMed ID: 26465030 [TBL] [Abstract][Full Text] [Related]
12. Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. Azpiazu C; Medina P; Sgolastra F; Moreno-Delafuente A; Viñuela E Environ Pollut; 2023 Jun; 326():121451. PubMed ID: 36933818 [TBL] [Abstract][Full Text] [Related]
13. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. Dively GP; Kamel A J Agric Food Chem; 2012 May; 60(18):4449-56. PubMed ID: 22452667 [TBL] [Abstract][Full Text] [Related]
14. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees. Samson-Robert O; Labrie G; Chagnon M; Fournier V PLoS One; 2014; 9(12):e108443. PubMed ID: 25438051 [TBL] [Abstract][Full Text] [Related]
15. Potential supply of floral resources to managed honey bees in natural mistbelt forests. Mensah S; Veldtman R; Seifert T J Environ Manage; 2017 Mar; 189():160-167. PubMed ID: 28038411 [TBL] [Abstract][Full Text] [Related]
16. Effects of sublethal doses of crop protection agents on honey bee (Apis mellifera) global colony vitality and its potential link with aberrant foraging activity. Beliën T; Kellers J; Heylen K; Keulemans W; Billen J; Arckens L; Huybrechts R; Gobin B Commun Agric Appl Biol Sci; 2009; 74(1):245-53. PubMed ID: 20218533 [TBL] [Abstract][Full Text] [Related]
18. Determination of exposure levels of honey bees foraging on flowers of mature citrus trees previously treated with imidacloprid. Byrne FJ; Visscher PK; Leimkuehler B; Fischer D; Grafton-Cardwell EE; Morse JG Pest Manag Sci; 2014 Mar; 70(3):470-82. PubMed ID: 23788449 [TBL] [Abstract][Full Text] [Related]
19. Honey Bee (Apis mellifera) Exposure to Pesticide Residues in Nectar and Pollen in Urban and Suburban Environments from Four Regions of the United States. Démares FJ; Schmehl D; Bloomquist JR; Cabrera AR; Huang ZY; Lau P; Rangel J; Sullivan J; Xie X; Ellis JD Environ Toxicol Chem; 2022 Apr; 41(4):991-1003. PubMed ID: 35262221 [TBL] [Abstract][Full Text] [Related]
20. Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.). Jiang J; Ma D; Zou N; Yu X; Zhang Z; Liu F; Mu W Chemosphere; 2018 Jun; 201():159-167. PubMed ID: 29524816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]