These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24723249)

  • 21. Mathematical model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control measures.
    Hayama Y; Yamamoto T; Kobayashi S; Muroga N; Tsutsui T
    Prev Vet Med; 2013 Nov; 112(3-4):183-93. PubMed ID: 24034814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies.
    Bolzoni L; Della Marca R; Groppi M
    J Math Biol; 2021 Sep; 83(4):36. PubMed ID: 34550465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal control of a birth and death epidemic process.
    Lefevre C
    Oper Res; 1981; 29(5):971-82. PubMed ID: 10253251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dynamic, optimal disease control model for foot-and-mouth-disease: II. Model results and policy implications.
    Kobayashi M; Carpenter TE; Dickey BF; Howitt RE
    Prev Vet Med; 2007 May; 79(2-4):274-86. PubMed ID: 17280730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability analysis and optimal vaccination of an SIR epidemic model.
    Zaman G; Han Kang Y; Jung IH
    Biosystems; 2008 Sep; 93(3):240-9. PubMed ID: 18584947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay.
    Eckalbar JC; Eckalbar WL
    Biosystems; 2015 Mar; 129():50-65. PubMed ID: 25555542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolving public perceptions and stability in vaccine uptake.
    Reluga TC; Bauch CT; Galvani AP
    Math Biosci; 2006 Dec; 204(2):185-98. PubMed ID: 17056073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal risk management of human alveolar echinococcosis with vermifuge.
    Kato N; Kotani K; Ueno S; Matsuda H
    J Theor Biol; 2010 Dec; 267(3):265-71. PubMed ID: 20728455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vaccination policies for chaos reduction in childhood epidemics.
    Piccardi C; Lazzaris S
    IEEE Trans Biomed Eng; 1998 May; 45(5):591-5. PubMed ID: 9581057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing reactive responses to outbreaks of immunizing infections: balancing case management and vaccination.
    Klepac P; Bjørnstad ON; Metcalf CJ; Grenfell BT
    PLoS One; 2012; 7(8):e41428. PubMed ID: 22899996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversify or focus? Spending to combat infectious diseases when budgets are tight.
    Anderson ST; Laxminarayan R; Salant SW
    J Health Econ; 2012 Jul; 31(4):658-75. PubMed ID: 22743106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis.
    Brandeau ML; Zaric GS; Richter A
    J Health Econ; 2003 Jul; 22(4):575-98. PubMed ID: 12842316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trade-off between BCG vaccination and the ability to detect and treat latent tuberculosis.
    Gerberry DJ
    J Theor Biol; 2009 Dec; 261(4):548-60. PubMed ID: 19733577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integral equation model for the control of a smallpox outbreak.
    Aldis GK; Roberts MG
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The comparative evaluation of expanded national immunization policies in Korea using an analytic hierarchy process.
    Shin T; Kim CB; Ahn YH; Kim HY; Cha BH; Uh Y; Lee JH; Hyun SJ; Lee DH; Go UY
    Vaccine; 2009 Jan; 27(5):792-802. PubMed ID: 19014990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.
    Prosper O; Saucedo O; Thompson D; Torres-Garcia G; Wang X; Castillo-Chavez C
    Math Biosci Eng; 2011 Jan; 8(1):141-70. PubMed ID: 21361405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity.
    Prosper O; Ruktanonchai N; Martcheva M
    J Theor Biol; 2014 Jul; 353():142-56. PubMed ID: 24641821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability analysis of a general age-dependent vaccination model for a vertically transmitted disease under the proportionate mixing assumption.
    el-Doma M
    IMA J Math Appl Med Biol; 2000 Jun; 17(2):119-36. PubMed ID: 10994509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How do resources influence control measures during a simulated outbreak of foot and mouth disease in Australia?
    Roche SE; Garner MG; Wicks RM; East IJ; de Witte K
    Prev Vet Med; 2014 Mar; 113(4):436-46. PubMed ID: 24412502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymptotic Analysis of Optimal Vaccination Policies.
    Penn MJ; Donnelly CA
    Bull Math Biol; 2023 Jan; 85(3):15. PubMed ID: 36662446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.