These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24723250)
1. Sliding time of flight: sliding time of flight MR angiography using a dynamic image reconstruction method. Choi J; Seo H; Lim Y; Han Y; Park H Magn Reson Med; 2015 Mar; 73(3):1177-83. PubMed ID: 24723250 [TBL] [Abstract][Full Text] [Related]
2. Scanning time efficient slinky for non-contrast MRA at low field. Liu K; Tanttu J; Castrén A; Rutt BK Magn Reson Imaging; 1999 Jun; 17(5):689-98. PubMed ID: 10372522 [TBL] [Abstract][Full Text] [Related]
3. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact. Liu K; Rutt BK J Magn Reson Imaging; 1998; 8(4):903-11. PubMed ID: 9702893 [TBL] [Abstract][Full Text] [Related]
4. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach. Trotier AJ; Lefrançois W; Ribot EJ; Thiaudiere E; Franconi JM; Miraux S Magn Reson Med; 2015 Mar; 73(3):984-94. PubMed ID: 24616047 [TBL] [Abstract][Full Text] [Related]
5. Contrast-enhanced MR angiography using time resolved interleaved projection sampling with three-dimensional Cartesian phase and slice encoding (TRIPPS). Du J Magn Reson Med; 2009 Apr; 61(4):918-24. PubMed ID: 19195019 [TBL] [Abstract][Full Text] [Related]
6. Systematic assessment and evaluation of sliding interleaved kY (SLINKY) acquisition for 3D MRA. Liu K; Lee DH; Rutt BK J Magn Reson Imaging; 1998; 8(4):912-23. PubMed ID: 9702894 [TBL] [Abstract][Full Text] [Related]
7. Phase enhancement for time-of-flight and flow-sensitive black-blood MR angiography. Kimura T; Ikedo M; Takemoto S Magn Reson Med; 2011 Aug; 66(2):437-47. PubMed ID: 21360743 [TBL] [Abstract][Full Text] [Related]
15. Magnetic resonance angiography with sliding interleaved projection reconstruction (SLIPR) acquisition. Parker DL; Roberts JA; Alexander AL; Goodrich KC; Tsuruda J J Magn Reson Imaging; 1999 Oct; 10(4):569-75. PubMed ID: 10508324 [TBL] [Abstract][Full Text] [Related]
16. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987 [TBL] [Abstract][Full Text] [Related]
17. 4D radial coronary artery imaging within a single breath-hold: cine angiography with phase-sensitive fat suppression (CAPS). Park J; Larson AC; Zhang Q; Simonetti O; Li D Magn Reson Med; 2005 Oct; 54(4):833-40. PubMed ID: 16149060 [TBL] [Abstract][Full Text] [Related]
18. Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease. Ruhl KM; Katoh M; Langer S; Mommertz G; Guenther RW; Niendorf T; Spuentrup E AJR Am J Roentgenol; 2008 Jun; 190(6):W360-4. PubMed ID: 18492878 [TBL] [Abstract][Full Text] [Related]
19. Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques. Davis WL; Blatter DD; Harnsberger HR; Parker DL AJR Am J Roentgenol; 1994 Oct; 163(4):915-20. PubMed ID: 8092035 [TBL] [Abstract][Full Text] [Related]