These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24723250)

  • 1. Sliding time of flight: sliding time of flight MR angiography using a dynamic image reconstruction method.
    Choi J; Seo H; Lim Y; Han Y; Park H
    Magn Reson Med; 2015 Mar; 73(3):1177-83. PubMed ID: 24723250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning time efficient slinky for non-contrast MRA at low field.
    Liu K; Tanttu J; Castrén A; Rutt BK
    Magn Reson Imaging; 1999 Jun; 17(5):689-98. PubMed ID: 10372522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact.
    Liu K; Rutt BK
    J Magn Reson Imaging; 1998; 8(4):903-11. PubMed ID: 9702893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach.
    Trotier AJ; Lefrançois W; Ribot EJ; Thiaudiere E; Franconi JM; Miraux S
    Magn Reson Med; 2015 Mar; 73(3):984-94. PubMed ID: 24616047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast-enhanced MR angiography using time resolved interleaved projection sampling with three-dimensional Cartesian phase and slice encoding (TRIPPS).
    Du J
    Magn Reson Med; 2009 Apr; 61(4):918-24. PubMed ID: 19195019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic assessment and evaluation of sliding interleaved kY (SLINKY) acquisition for 3D MRA.
    Liu K; Lee DH; Rutt BK
    J Magn Reson Imaging; 1998; 8(4):912-23. PubMed ID: 9702894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase enhancement for time-of-flight and flow-sensitive black-blood MR angiography.
    Kimura T; Ikedo M; Takemoto S
    Magn Reson Med; 2011 Aug; 66(2):437-47. PubMed ID: 21360743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOF-MRA using multi-oblique-stack acquisition (MOSA).
    Wu EX; Hui ES; Cheung JS
    J Magn Reson Imaging; 2007 Aug; 26(2):432-6. PubMed ID: 17610282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of slab boundary artifact with multiple overlapping thin slab acquisition in MR angiography of the cervical carotid artery.
    Robison RO; Blatter DD; Parker DL; Barney WW; Perry DM; Goodrich KC
    J Magn Reson Imaging; 1994; 4(4):529-35. PubMed ID: 7949677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion corrected intracranial MRA using PROPELLER with RF quadratic encoding.
    Zwart NR; Pipe JG
    Magn Reson Med; 2009 Jun; 61(6):1405-14. PubMed ID: 19353668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential three-dimensional time-of-flight MR angiography of the carotid arteries: value of variable excitation and postprocessing in reducing venetian blind artifact.
    Ding X; Tkach JA; Ruggieri PR; Masaryk TJ
    AJR Am J Roentgenol; 1994 Sep; 163(3):683-8. PubMed ID: 8079868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition.
    Nael K; Fenchel M; Salamon N; Duckwiler GR; Laub G; Finn JP; Villablanca JP
    Invest Radiol; 2006 Oct; 41(10):763-8. PubMed ID: 16971800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable-flip-angle single-slab 3D GRASE imaging with phase-independent image reconstruction.
    Kim H; Kim DH; Park J
    Magn Reson Med; 2015 Mar; 73(3):1041-52. PubMed ID: 24639285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: initial clinical evaluation.
    François CJ; Tuite D; Deshpande V; Jerecic R; Weale P; Carr JC
    Radiology; 2009 Mar; 250(3):932-9. PubMed ID: 19164696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance angiography with sliding interleaved projection reconstruction (SLIPR) acquisition.
    Parker DL; Roberts JA; Alexander AL; Goodrich KC; Tsuruda J
    J Magn Reson Imaging; 1999 Oct; 10(4):569-75. PubMed ID: 10508324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging.
    Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM
    Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D radial coronary artery imaging within a single breath-hold: cine angiography with phase-sensitive fat suppression (CAPS).
    Park J; Larson AC; Zhang Q; Simonetti O; Li D
    Magn Reson Med; 2005 Oct; 54(4):833-40. PubMed ID: 16149060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease.
    Ruhl KM; Katoh M; Langer S; Mommertz G; Guenther RW; Niendorf T; Spuentrup E
    AJR Am J Roentgenol; 2008 Jun; 190(6):W360-4. PubMed ID: 18492878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques.
    Davis WL; Blatter DD; Harnsberger HR; Parker DL
    AJR Am J Roentgenol; 1994 Oct; 163(4):915-20. PubMed ID: 8092035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-contrast-enhanced peripheral angiography using a sliding interleaved cylinder acquisition.
    Kwon KT; Kerr AB; Wu HH; Hu BS; Brittain JH; Nishimura DG
    Magn Reson Med; 2015 Sep; 74(3):727-38. PubMed ID: 25203505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.