These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24723298)
1. Ionic liquids as stationary phases in gas chromatography: determination of chlorobenzenes in soils. González Paredes RM; García Pinto C; Pérez Pavón JL; Moreno Cordero B J Sep Sci; 2014 Jun; 37(12):1448-55. PubMed ID: 24723298 [TBL] [Abstract][Full Text] [Related]
2. Determination of trihalomethanes in soil matrices by simplified quick, easy, cheap, effective, rugged and safe extraction and fast gas chromatography with electron capture detection. Herrero Martín S; García Pinto C; Pérez Pavón JL; Moreno Cordero B J Chromatogr A; 2010 Jul; 1217(30):4883-9. PubMed ID: 20554286 [TBL] [Abstract][Full Text] [Related]
3. In situ derivatization combined to automated microextraction by packed sorbents for the determination of chlorophenols in soil samples by gas chromatography mass spectrometry. González Paredes RM; García Pinto C; Pérez Pavón JL; Moreno Cordero B J Chromatogr A; 2014 Sep; 1359():52-9. PubMed ID: 25113872 [TBL] [Abstract][Full Text] [Related]
4. Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography. Rodríguez-Sánchez S; Galindo-Iranzo P; Soria AC; Sanz ML; Quintanilla-López JE; Lebrón-Aguilar R J Chromatogr A; 2014 Jan; 1326():96-102. PubMed ID: 24373774 [TBL] [Abstract][Full Text] [Related]
5. Determination of chlorobenzenes in water by drop-based liquid-phase microextraction and gas chromatography-electron capture detection. Tor A J Chromatogr A; 2006 Aug; 1125(1):129-32. PubMed ID: 16859695 [TBL] [Abstract][Full Text] [Related]
6. Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry. Li Y; Dong F; Liu X; Xu J; Chen X; Han Y; Liang X; Zheng Y J Hazard Mater; 2013 Apr; 250-251():9-18. PubMed ID: 23434475 [TBL] [Abstract][Full Text] [Related]
7. Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples. Kamarei F; Ebrahimzadeh H; Yamini Y Talanta; 2010 Nov; 83(1):36-41. PubMed ID: 21035640 [TBL] [Abstract][Full Text] [Related]
8. Ultrasonic-assisted water extraction and solvent bar microextraction followed by gas chromatography-ion trap mass spectrometry for determination of chlorobenzenes in soil samples. Wang L; Wang L; Chen J; Du W; Fan G; Lu X J Chromatogr A; 2012 Sep; 1256():9-14. PubMed ID: 22889603 [TBL] [Abstract][Full Text] [Related]
9. Ionic liquid stationary phases for gas chromatography. Poole CF; Poole SK J Sep Sci; 2011 Apr; 34(8):888-900. PubMed ID: 21290604 [TBL] [Abstract][Full Text] [Related]
10. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. Poole CF; Lenca N J Chromatogr A; 2014 Aug; 1357():87-109. PubMed ID: 24690306 [TBL] [Abstract][Full Text] [Related]
11. Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography determination of chlorobenzenes in real water samples as model analytical application. Chisvert A; Román IP; Vidal L; Canals A J Chromatogr A; 2009 Feb; 1216(9):1290-5. PubMed ID: 19144344 [TBL] [Abstract][Full Text] [Related]
12. A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography with mass spectrometry detection. García Pinto C; Herrero Martín S; Pérez Pavón JL; Moreno Cordero B Anal Chim Acta; 2011 Mar; 689(1):129-36. PubMed ID: 21338768 [TBL] [Abstract][Full Text] [Related]
13. Development of a multiresidue method for the determination of multiclass pesticides in soil using GC. Park JH; Mamun MI; Choi JH; Abd El-Aty AM; Assayed ME; Choi WJ; Yoon KS; Han SS; Kim HK; Park BJ; Kim KS; Kim SD; Choi HG; Shim JH Biomed Chromatogr; 2010 Aug; 24(8):893-901. PubMed ID: 20039336 [TBL] [Abstract][Full Text] [Related]
14. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography. Qiao L; Lu K; Qi M; Fu R J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301 [TBL] [Abstract][Full Text] [Related]
15. Enhanced resolution of Mentha piperita volatile fraction using a novel medium-polarity ionic liquid gas chromatography stationary phase. Ragonese C; Sciarrone D; Grasso E; Dugo P; Mondello L J Sep Sci; 2016 Feb; 39(3):537-44. PubMed ID: 26613675 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Ragonese C; Sciarrone D; Tranchida PQ; Dugo P; Dugo G; Mondello L Anal Chem; 2011 Oct; 83(20):7947-54. PubMed ID: 21902214 [TBL] [Abstract][Full Text] [Related]