These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 24723570)

  • 21. Crowdsourced mapping of unexplored target space of kinase inhibitors.
    Cichońska A; Ravikumar B; Allaway RJ; Wan F; Park S; Isayev O; Li S; Mason M; Lamb A; Tanoli Z; Jeon M; Kim S; Popova M; Capuzzi S; Zeng J; Dang K; Koytiger G; Kang J; Wells CI; Willson TM; ; Oprea TI; Schlessinger A; Drewry DH; Stolovitzky G; Wennerberg K; Guinney J; Aittokallio T
    Nat Commun; 2021 Jun; 12(1):3307. PubMed ID: 34083538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.
    Yang F; Xu J; Zeng J
    Pac Symp Biocomput; 2014; ():148-59. PubMed ID: 24297542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A semi-supervised method for drug-target interaction prediction with consistency in networks.
    Chen H; Zhang Z
    PLoS One; 2013; 8(5):e62975. PubMed ID: 23667553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug target predictions based on heterogeneous graph inference.
    Wang W; Yang S; Li J
    Pac Symp Biocomput; 2013; ():53-64. PubMed ID: 23424111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug-Target Interactions: Prediction Methods and Applications.
    Anusuya S; Kesherwani M; Priya KV; Vimala A; Shanmugam G; Velmurugan D; Gromiha MM
    Curr Protein Pept Sci; 2018; 19(6):537-561. PubMed ID: 27829350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Machine Learning Techniques in Drug-target Interactions Prediction.
    Zhang S; Wang J; Lin Z; Liang Y
    Curr Pharm Des; 2021; 27(17):2076-2087. PubMed ID: 33238865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-chemical interaction prediction via kernelized sparse learning SVM.
    Shi Y; Zhang X; Liao X; Lin G; Schuurmans D
    Pac Symp Biocomput; 2013; ():41-52. PubMed ID: 23424110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.
    Xia Z; Wu LY; Zhou X; Wong ST
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S6. PubMed ID: 20840733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico target prediction for elucidating the mode of action of herbicides including prospective validation.
    Chiddarwar RK; Rohrer SG; Wolf A; Tresch S; Wollenhaupt S; Bender A
    J Mol Graph Model; 2017 Jan; 71():70-79. PubMed ID: 27846423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic.
    Fakhraei S; Huang B; Raschid L; Getoor L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):775-87. PubMed ID: 26356852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug-target interaction prediction via chemogenomic space: learning-based methods.
    Mousavian Z; Masoudi-Nejad A
    Expert Opin Drug Metab Toxicol; 2014 Sep; 10(9):1273-87. PubMed ID: 25112457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Brief Bioinform; 2019 Jul; 20(4):1337-1357. PubMed ID: 29377981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A semi-supervised learning framework for quantitative structure-activity regression modelling.
    Watson O; Cortes-Ciriano I; Watson JA
    Bioinformatics; 2021 Apr; 37(3):342-350. PubMed ID: 32777821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of new bioactive molecules using a Bayesian belief network.
    Abdo A; Leclère V; Jacques P; Salim N; Pupin M
    J Chem Inf Model; 2014 Jan; 54(1):30-6. PubMed ID: 24392938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Link Prediction Only With Interaction Data and its Application on Drug Repositioning.
    Liu J; Zuo Z; Wu G
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):547-555. PubMed ID: 32340956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.