These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24723859)

  • 1. Navigational strategies underlying phototaxis in larval zebrafish.
    Chen X; Engert F
    Front Syst Neurosci; 2014; 8():39. PubMed ID: 24723859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae.
    Karpenko S; Wolf S; Lafaye J; Le Goc G; Panier T; Bormuth V; Candelier R; Debrégeas G
    Elife; 2020 Jan; 9():. PubMed ID: 31895038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor computation underlying phototaxis in zebrafish.
    Wolf S; Dubreuil AM; Bertoni T; Böhm UL; Bormuth V; Candelier R; Karpenko S; Hildebrand DGC; Bianco IH; Monasson R; Debrégeas G
    Nat Commun; 2017 Sep; 8(1):651. PubMed ID: 28935857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms underlying flexible phototaxis in larval zebrafish.
    Chen AB; Deb D; Bahl A; Engert F
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34027982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation.
    Burgess HA; Schoch H; Granato M
    Curr Biol; 2010 Feb; 20(4):381-6. PubMed ID: 20153194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigational strategies underlying temporal phototaxis in Drosophila larvae.
    Zhu ML; Herrera KJ; Vogt K; Bahl A
    J Exp Biol; 2021 Jun; 224(11):. PubMed ID: 34115116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical modelling of navigational decisions based on intensity versus directionality in Drosophila larval phototaxis.
    de Andres-Bragado L; Mazza C; Senn W; Sprecher SG
    Sci Rep; 2018 Jul; 8(1):11272. PubMed ID: 30050066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.
    Guggiana-Nilo DA; Engert F
    Front Behav Neurosci; 2016; 10():160. PubMed ID: 27594828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.
    Trivedi CA; Bollmann JH
    Front Neural Circuits; 2013; 7():86. PubMed ID: 23675322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
    Humberg TH; Bruegger P; Afonso B; Zlatic M; Truman JW; Gershow M; Samuel A; Sprecher SG
    Nat Commun; 2018 Mar; 9(1):1260. PubMed ID: 29593252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A behavioral and modeling study of control algorithms underlying the translational optomotor response in larval zebrafish with implications for neural circuit function.
    Holman JG; Lai WWK; Pichler P; Saska D; Lagnado L; Buckley CL
    PLoS Comput Biol; 2023 Feb; 19(2):e1010924. PubMed ID: 36821587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.
    Dunn TW; Mu Y; Narayan S; Randlett O; Naumann EA; Yang CT; Schier AF; Freeman J; Engert F; Ahrens MB
    Elife; 2016 Mar; 5():e12741. PubMed ID: 27003593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prey capture behavior evoked by simple visual stimuli in larval zebrafish.
    Bianco IH; Kampff AR; Engert F
    Front Syst Neurosci; 2011; 5():101. PubMed ID: 22203793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
    Oteiza P; Odstrcil I; Lauder G; Portugues R; Engert F
    Nature; 2017 Jul; 547(7664):445-448. PubMed ID: 28700578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation.
    Larsch J; Baier H
    Curr Biol; 2018 Nov; 28(22):3523-3532.e4. PubMed ID: 30393036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual pathways for postural control and negative phototaxis in lamprey.
    Ullén F; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1997 Aug; 78(2):960-76. PubMed ID: 9307127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales.
    Johnson RE; Linderman S; Panier T; Wee CL; Song E; Herrera KJ; Miller A; Engert F
    Curr Biol; 2020 Jan; 30(1):70-82.e4. PubMed ID: 31866367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prey capture by larval zebrafish: evidence for fine axial motor control.
    Borla MA; Palecek B; Budick S; O'Malley DM
    Brain Behav Evol; 2002; 60(4):207-29. PubMed ID: 12457080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Pairs of
    Humberg TH; Sprecher SG
    Front Behav Neurosci; 2018; 12():305. PubMed ID: 30568583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.