BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 24724051)

  • 1. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Bernt KM; Hunger SP
    Front Oncol; 2014; 4():54. PubMed ID: 24724051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine kinase inhibitor use in pediatric Philadelphia chromosome-positive acute lymphoblastic anemia.
    Hunger SP
    Hematology Am Soc Hematol Educ Program; 2011; 2011():361-5. PubMed ID: 22160058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuation of Maintenance Tyrosine Kinase Inhibitors in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia outside of Transplant.
    Samra B; Kantarjian HM; Sasaki K; Alotaibi AS; Konopleva M; O'Brien S; Ferrajoli A; Garris R; Nunez CA; Kadia TM; Short NJ; Jabbour E
    Acta Haematol; 2021; 144(3):285-292. PubMed ID: 33238261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment.
    Kaczmarska A; Śliwa P; Zawitkowska J; Lejman M
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dasatinib in the Management of Pediatric Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia.
    Cerchione C; Locatelli F; Martinelli G
    Front Oncol; 2021; 11():632231. PubMed ID: 33842339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allogeneic Hematopoietic Stem Cell Transplantation, Especially Haploidentical, May Improve Long-Term Survival for High-Risk Pediatric Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in the Tyrosine Kinase Inhibitor Era.
    Xue YJ; Cheng YF; Lu AD; Wang Y; Zuo YX; Yan CH; Wu J; Sun YQ; Suo P; Chen YH; Chen H; Jia YP; Liu KY; Han W; Xu LP; Zhang LP; Huang XJ
    Biol Blood Marrow Transplant; 2019 Aug; 25(8):1611-1620. PubMed ID: 30537550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of BCR-ABL1 kinase domain mutations causing imatinib resistance in chronic myelogenous leukemia.
    Moore FR; Yang F; Press RD
    Methods Mol Biol; 2013; 999():25-39. PubMed ID: 23666688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Jeha S; Coustan-Smith E; Pei D; Sandlund JT; Rubnitz JE; Howard SC; Inaba H; Bhojwani D; Metzger ML; Cheng C; Choi JK; Jacobsen J; Shurtleff SA; Raimondi S; Ribeiro RC; Pui CH; Campana D
    Cancer; 2014 May; 120(10):1514-9. PubMed ID: 24501014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and safety of ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a case series from a single institute.
    Kidoguchi K; Ureshino H; Kizuka-Sano H; Yamaguchi K; Katsuya H; Kubota Y; Ando T; Miura M; Takahashi N; Kimura S
    Int J Hematol; 2021 Aug; 114(2):199-204. PubMed ID: 33907977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does Post-Transplant Maintenance Therapy With Tyrosine Kinase Inhibitors Improve Outcomes of Patients With High-Risk Philadelphia Chromosome-Positive Leukemia?
    DeFilipp Z; Langston AA; Chen Z; Zhang C; Arellano ML; El Rassi F; Flowers CR; Kota VK; Al-Kadhimi Z; Veldman R; Jillella AP; Lonial S; Waller EK; Khoury HJ
    Clin Lymphoma Myeloma Leuk; 2016 Aug; 16(8):466-471.e1. PubMed ID: 27297665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clonal evolution of two distinct T315I-positive BCR-ABL1 subclones in a Philadelphia-positive acute lymphoblastic leukemia failing multiple lines of therapy: a case report.
    De Benedittis C; Papayannidis C; Venturi C; Abbenante MC; Paolini S; Parisi S; Sartor C; Cavo M; Martinelli G; Soverini S
    BMC Cancer; 2017 Aug; 17(1):523. PubMed ID: 28779753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine kinase inhibitor prophylaxis after transplant for Philadelphia chromosome-positive acute lymphoblastic leukemia.
    Akahoshi Y; Nishiwaki S; Mizuta S; Ohashi K; Uchida N; Tanaka M; Fukuda T; Ozawa Y; Takahashi S; Onizuka M; Shiratori S; Nakamae H; Kanda Y; Ichinohe T; Atsuta Y; Kako S;
    Cancer Sci; 2019 Oct; 110(10):3255-3266. PubMed ID: 31402561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relapse Prevention with Tyrosine Kinase Inhibitors after Allogeneic Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblast Leukemia: A Systematic Review.
    Warraich Z; Tenneti P; Thai T; Hubben A; Amin H; McBride A; Warraich S; Hannan A; Warraich F; Majhail N; Kalaycio M; Anwer F
    Biol Blood Marrow Transplant; 2020 Mar; 26(3):e55-e64. PubMed ID: 31557532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Efficacy comparison of sequential treatment with first-line administration of second-generation and first-generation tyrosine kinase inhibitors in patients with Ph
    Yang F; Cai WZ; Yang XD; Chen SN; Tang XW; Sun AN; Wu DP; Qian WQ; Qiu HY
    Zhonghua Xue Ye Xue Za Zhi; 2018 Feb; 39(2):110-115. PubMed ID: 29562444
    [No Abstract]   [Full Text] [Related]  

  • 15. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665.
    DeBoer R; Koval G; Mulkey F; Wetzler M; Devine S; Marcucci G; Stone RM; Larson RA; Bloomfield CD; Geyer S; Mullighan CG; Stock W
    Leuk Lymphoma; 2016 Oct; 57(10):2298-306. PubMed ID: 26892479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allogeneic Stem Cell Transplantation versus Tyrosine Kinase Inhibitors Combined with Chemotherapy in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia.
    Wang J; Jiang Q; Xu LP; Zhang XH; Chen H; Qin YZ; Ruan GR; Jiang H; Jia JS; Zhao T; Liu KY; Jiang B; Huang XJ
    Biol Blood Marrow Transplant; 2018 Apr; 24(4):741-750. PubMed ID: 29247779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How should we treat older adults with Ph+ adult ALL and what novel approaches are being investigated?
    Wieduwilt MJ
    Best Pract Res Clin Haematol; 2017 Sep; 30(3):201-211. PubMed ID: 29050693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Therapeutic strategies for childhood high-risk acute lymphoblastic leukemia].
    Lu XT
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Apr; 45(2):327-32. PubMed ID: 23591360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia.
    Churchman ML; Mullighan CG
    Exp Hematol; 2017 Feb; 46():1-8. PubMed ID: 27865806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report.
    Martinelli G; Iacobucci I; Storlazzi CT; Vignetti M; Paoloni F; Cilloni D; Soverini S; Vitale A; Chiaretti S; Cimino G; Papayannidis C; Paolini S; Elia L; Fazi P; Meloni G; Amadori S; Saglio G; Pane F; Baccarani M; Foà R
    J Clin Oncol; 2009 Nov; 27(31):5202-7. PubMed ID: 19770381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.