These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24724102)
1. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization. Lukasz D; Liwia R; Aleksandra M; Aleksandra S Biomed Res Int; 2014; 2014():841892. PubMed ID: 24724102 [TBL] [Abstract][Full Text] [Related]
2. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Uhrynowski W; Debiec K; Sklodowska A; Drewniak L Sci Total Environ; 2017 Nov; 598():680-689. PubMed ID: 28454040 [TBL] [Abstract][Full Text] [Related]
3. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic. Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
5. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan. Das S; Liu CC; Jean JS; Liu T Microb Ecol; 2016 Feb; 71(2):365-74. PubMed ID: 26219267 [TBL] [Abstract][Full Text] [Related]
6. Soil Microbial Communities Involved in Reductive Dissolution of Arsenic from Arsenate-Laden Minerals with Different Carbon Sources. Yamamura S; Kurasawa H; Kashiwabara Y; Hori T; Aoyagi T; Nakajima N; Amachi S Environ Sci Technol; 2019 Nov; 53(21):12398-12406. PubMed ID: 31580064 [TBL] [Abstract][Full Text] [Related]
7. Biological effect of phosphate on the dissimilatory arsenate-respiring bacteria-catalyzed reductive mobilization of arsenic from contaminated soils. Shi W; Xu Y; Wu W; Zeng XC Environ Pollut; 2022 Sep; 308():119698. PubMed ID: 35787423 [TBL] [Abstract][Full Text] [Related]
8. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils. Wu Y; Wu W; Xu Y; Zuo Y; Zeng XC J Environ Sci (China); 2023 Mar; 125():582-592. PubMed ID: 36375940 [TBL] [Abstract][Full Text] [Related]
9. Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing Tsuchiya T; Ehara A; Kasahara Y; Hamamura N; Amachi S Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31101608 [TBL] [Abstract][Full Text] [Related]
10. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample. Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567 [TBL] [Abstract][Full Text] [Related]
11. Genomic Analysis of Uhrynowski W; Radlinska M; Drewniak L Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813619 [No Abstract] [Full Text] [Related]
12. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. Wang J; Zeng XC; Zhu X; Chen X; Zeng X; Mu Y; Yang Y; Wang Y J Hazard Mater; 2017 Oct; 339():409-417. PubMed ID: 28686931 [TBL] [Abstract][Full Text] [Related]
13. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Drewniak L; Maryan N; Lewandowski W; Kaczanowski S; Sklodowska A Environ Pollut; 2012 Mar; 162():190-201. PubMed ID: 22243864 [TBL] [Abstract][Full Text] [Related]
14. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508 [TBL] [Abstract][Full Text] [Related]
15. Comparisons of four As(V)-respiring bacteria from contaminated aquifers: activities to respire soluble As(V) and to reductively mobilize solid As(V). Zeng XC; Xu Y; Liu Z; Chen X; Wu Y Water Res; 2022 Oct; 224():119097. PubMed ID: 36148700 [TBL] [Abstract][Full Text] [Related]
16. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related]
17. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities. Yamamura S; Sudo T; Watanabe M; Tsuboi S; Soda S; Ike M; Amachi S J Hazard Mater; 2018 Jan; 342():571-578. PubMed ID: 28888188 [TBL] [Abstract][Full Text] [Related]
18. Contradictory Impacts of Nitrate on the Dissimilatory Arsenate-Respiring Prokaryotes-Induced Reductive Mobilization of Arsenic from Contaminated Sediments: Mechanism Insight from Metagenomic and Functional Analyses. Zeng XC; Xu Y; Lu H; Xiong J; Xu H; Wu W Environ Sci Technol; 2023 Sep; 57(36):13473-13486. PubMed ID: 37639510 [TBL] [Abstract][Full Text] [Related]
19. Possible Involvement of a Tetrathionate Reductase Homolog in Dissimilatory Arsenate Reduction by Muramatsu F; Tonomura M; Yamada M; Kasahara Y; Yamamura S; Iino T; Amachi S Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978134 [No Abstract] [Full Text] [Related]
20. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Cai X; Yin N; Wang P; Du H; Liu X; Cui Y J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]