These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24724102)

  • 21. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing
    Uhrynowski W; Decewicz P; Dziewit L; Radlinska M; Krawczyk PS; Lipinski L; Adamska D; Drewniak L
    Front Microbiol; 2017; 8():936. PubMed ID: 28611742
    [No Abstract]   [Full Text] [Related]  

  • 22. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia.
    Wang Y; Wei D; Li P; Jiang Z; Liu H; Qing C; Wang H
    Ecotoxicology; 2021 Oct; 30(8):1680-1688. PubMed ID: 33196984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3.
    Murphy JN; Durbin KJ; Saltikov CW
    J Bacteriol; 2009 Feb; 191(3):1035-43. PubMed ID: 19060154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations.
    Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone.
    Yamamura S; Watanabe M; Kanzaki M; Soda S; Ike M
    Environ Sci Technol; 2008 Aug; 42(16):6154-9. PubMed ID: 18767680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of arsenic removal water treatment system through characterization of terminal electron accepting processes.
    Upadhyaya G; Clancy TM; Brown J; Hayes KF; Raskin L
    Environ Sci Technol; 2012 Nov; 46(21):11702-9. PubMed ID: 23030510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III).
    Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB
    Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.
    Drewniak L; Styczek A; Majder-Lopatka M; Sklodowska A
    Environ Pollut; 2008 Dec; 156(3):1069-74. PubMed ID: 18550235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S.
    Staicu LC; Wójtowicz PJ; Molnár Z; Ruiz-Agudo E; Gallego JLR; Baragaño D; Pósfai M
    Environ Pollut; 2022 Aug; 306():119451. PubMed ID: 35569621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
    Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET
    Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium.
    Yamamura S; Yamamoto N; Ike M; Fujita M
    J Biosci Bioeng; 2005 Aug; 100(2):219-22. PubMed ID: 16198269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil.
    Chang YC; Nawata A; Jung K; Kikuchi S
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):37-44. PubMed ID: 21681485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissimilatory arsenate-respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate.
    Shi W; Wu W; Zeng XC; Chen X; Zhu X; Cheng S
    Ecotoxicology; 2018 Oct; 27(8):1126-1136. PubMed ID: 30099680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1.
    Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S
    Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation.
    Banerjee S; Datta S; Chattyopadhyay D; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia.
    Guo H; Liu Z; Ding S; Hao C; Xiu W; Hou W
    Environ Pollut; 2015 Aug; 203():50-59. PubMed ID: 25863882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.
    Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S
    Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.