These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24724293)
41. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M. Poopathi S; Mani TR; Rao DR; Baskaran G; Kabilan L Southeast Asian J Trop Med Public Health; 1999 Sep; 30(3):477-81. PubMed ID: 10774654 [TBL] [Abstract][Full Text] [Related]
42. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance. Hsu JC; Feng HT J Econ Entomol; 2006 Jun; 99(3):931-6. PubMed ID: 16813333 [TBL] [Abstract][Full Text] [Related]
43. Field-evolved resistance to insecticides in the invasive western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China. Wang ZH; Gong YJ; Jin GH; Li BY; Chen JC; Kang ZJ; Zhu L; Gao YL; Reitz S; Wei SJ Pest Manag Sci; 2016 Jul; 72(7):1440-4. PubMed ID: 26617067 [TBL] [Abstract][Full Text] [Related]
44. Lack of cross-resistance to Cry19A from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to cry toxins from Bacillus thuringiensis subsp. israelensis. Wirth MC; Delécluse A; Walton WE Appl Environ Microbiol; 2001 Apr; 67(4):1956-8. PubMed ID: 11282656 [TBL] [Abstract][Full Text] [Related]
45. Insecticide resistance in potential vector mosquitoes for West Nile virus in Japan. Kasai S; Shono T; Komagata O; Tsuda Y; Kobayashi M; Motoki M; Kashima I; Tanikawa T; Yoshida M; Tanaka I; Shinjo G; Hashimoto T; Ishikawa T; Takahashi T; Higa Y; Tomita T J Med Entomol; 2007 Sep; 44(5):822-9. PubMed ID: 17915515 [TBL] [Abstract][Full Text] [Related]
46. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Sayyed AH; Omar D; Wright DJ Pest Manag Sci; 2004 Aug; 60(8):827-32. PubMed ID: 15307676 [TBL] [Abstract][Full Text] [Related]
47. Laboratory and field evaluation of spinosad, a biorational natural product, against larvae of Culex mosquitoes. Jiang Y; Mulla MS J Am Mosq Control Assoc; 2009 Dec; 25(4):456-66. PubMed ID: 20099593 [TBL] [Abstract][Full Text] [Related]
48. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. Zahiri NS; Su T; Mulla MS J Med Entomol; 2002 May; 39(3):513-20. PubMed ID: 12061449 [TBL] [Abstract][Full Text] [Related]
49. Mosquitocidal toxin from Bacillus sphaericus induces stronger delayed effects than binary toxin on Culex quinquefasciatus (Diptera: Culicidae). Wei S; Cai Q; Yuan Z J Med Entomol; 2006 Jul; 43(4):726-30. PubMed ID: 16892631 [TBL] [Abstract][Full Text] [Related]
50. Effectiveness and residual activity comparison of granular formulations of insect growth regulators pyriproxyfen and s-methoprene against Florida mosquitoes in laboratory and outdoor conditions. Nayar JK; Ali A; Zaim M J Am Mosq Control Assoc; 2002 Sep; 18(3):196-201. PubMed ID: 12322941 [TBL] [Abstract][Full Text] [Related]
51. Development of malathion resistance in Culex quinquefasciatus Say (Diptera: Culicidae). Gopalan N; Prakash S; Bhattacharya BK; Anand OP; Rao KM Indian J Med Res; 1996 Feb; 103():84-90. PubMed ID: 8714144 [TBL] [Abstract][Full Text] [Related]
53. Biological fitness of a Culex quinquefasciatus population and its resistance to Bacillus sphaericus. de Oliveira CM; Filho FC; Beltràn JE; Silva-Filha MH; Regis L J Am Mosq Control Assoc; 2003 Jun; 19(2):125-9. PubMed ID: 12825662 [TBL] [Abstract][Full Text] [Related]
54. Laboratory and field evaluation of Bacillus thuringiensis and B. sphaericus against mosquito larvae. Baruah I; Das SC J Commun Dis; 1994 Jun; 26(2):82-7. PubMed ID: 7989680 [TBL] [Abstract][Full Text] [Related]
55. Inheritance, stability, and dominance of cry resistance in Culex quinquefasciatus (Diptera: Culicidae) selected with the three cry toxins of Bacillus thuringiensis subsp. israelensis. Wirth MC; Walton WE; Federici BA J Med Entomol; 2012 Jul; 49(4):886-94. PubMed ID: 22897049 [TBL] [Abstract][Full Text] [Related]
56. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. Wirth MC; Jiannino JA; Federici BA; Walton WE J Med Entomol; 2004 Sep; 41(5):935-41. PubMed ID: 15535624 [TBL] [Abstract][Full Text] [Related]
57. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Nielsen-Leroux C; Charles JF; Thiéry I; Georghiou GP Eur J Biochem; 1995 Feb; 228(1):206-10. PubMed ID: 7883005 [TBL] [Abstract][Full Text] [Related]
58. Various levels of cross-resistance to Bacillus sphaericus strains in Culex pipiens (Diptera: Culicidae) colonies resistant to B. sphaericus strain 2362. Nielsen-LeRoux C; Rao DR; Murphy JR; Carron A; Mani TR; Hamon S; Mulla MS Appl Environ Microbiol; 2001 Nov; 67(11):5049-54. PubMed ID: 11679325 [TBL] [Abstract][Full Text] [Related]
59. Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Hamdan H; Sofian-Azirun M; Nazni W; Lee HL Trop Biomed; 2005 Jun; 22(1):45-52. PubMed ID: 16880753 [TBL] [Abstract][Full Text] [Related]
60. Larvicidal activity of spinosad and its impact on oviposition preferences of the West Nile vector Culex pipiens biotype molestus - A comparison with a chitin synthesis inhibitor. Michaelakis A; Papachristos DP; Rumbos CI; Benelli G; Athanassiou CG Parasitol Int; 2020 Feb; 74():101917. PubMed ID: 31004804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]