These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 24724634)

  • 1. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.
    Stannigel K; Hauke P; Marcos D; Hafezi M; Diehl S; Dalmonte M; Zoller P
    Phys Rev Lett; 2014 Mar; 112(12):120406. PubMed ID: 24724634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced gauge fields for ultracold atoms.
    Goldman N; Juzeliūnas G; Öhberg P; Spielman IB
    Rep Prog Phys; 2014 Dec; 77(12):126401. PubMed ID: 25422950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory.
    Osterloh K; Baig M; Santos L; Zoller P; Lewenstein M
    Phys Rev Lett; 2005 Jul; 95(1):010403. PubMed ID: 16090589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Scars from Zero Modes in an Abelian Lattice Gauge Theory on Ladders.
    Banerjee D; Sen A
    Phys Rev Lett; 2021 Jun; 126(22):220601. PubMed ID: 34152190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
    Mezzacapo A; Rico E; Sabín C; Egusquiza IL; Lamata L; Solano E
    Phys Rev Lett; 2015 Dec; 115(24):240502. PubMed ID: 26705616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of non-Abelian gauge theories with optical lattices.
    Tagliacozzo L; Celi A; Orland P; Mitchell MW; Lewenstein M
    Nat Commun; 2013; 4():2615. PubMed ID: 24162080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
    Satija II; Dakin DC; Clark CW
    Phys Rev Lett; 2006 Nov; 97(21):216401. PubMed ID: 17155755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Simulation of the Universal Features of the Polyakov Loop.
    Zhang J; Unmuth-Yockey J; Zeiher J; Bazavov A; Tsai SW; Meurice Y
    Phys Rev Lett; 2018 Nov; 121(22):223201. PubMed ID: 30547605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and observation of non-Abelian gauge fields in real space.
    Yang Y; Peng C; Zhu D; Buljan H; Joannopoulos JD; Zhen B; Soljačić M
    Science; 2019 Sep; 365(6457):1021-1025. PubMed ID: 31488687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.
    Kasamatsu K; Ichinose I; Matsui T
    Phys Rev Lett; 2013 Sep; 111(11):115303. PubMed ID: 24074102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions.
    Goldman N; Kubasiak A; Bermudez A; Gaspard P; Lewenstein M; Martin-Delgado MA
    Phys Rev Lett; 2009 Jul; 103(3):035301. PubMed ID: 19659289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.
    Zohar E; Cirac JI; Reznik B
    Phys Rev Lett; 2013 Mar; 110(12):125304. PubMed ID: 25166817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States.
    Liu Z; Möller G; Bergholtz EJ
    Phys Rev Lett; 2017 Sep; 119(10):106801. PubMed ID: 28949152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum simulation of lattice gauge theories in more than one space dimension-requirements, challenges and methods.
    Zohar E
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210069. PubMed ID: 34923840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Non-Abelian Lattice Gauge Fields for Photons in the Synthetic Frequency Dimension.
    Cheng D; Wang K; Fan S
    Phys Rev Lett; 2023 Feb; 130(8):083601. PubMed ID: 36898123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement of Distillation for Lattice Gauge Theories.
    Van Acoleyen K; Bultinck N; Haegeman J; Marien M; Scholz VB; Verstraete F
    Phys Rev Lett; 2016 Sep; 117(13):131602. PubMed ID: 27715127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic quantum simulator for lattice gauge theories and ring exchange models.
    Büchler HP; Hermele M; Huber SD; Fisher MP; Zoller P
    Phys Rev Lett; 2005 Jul; 95(4):040402. PubMed ID: 16090783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.