These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 24724641)

  • 1. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.
    Zhang Z; Mower J; Englund D; Wong FN; Shapiro JH
    Phys Rev Lett; 2014 Mar; 112(12):120506. PubMed ID: 24724641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Demonstration of Conjugate-Franson Interferometry.
    Chen C; Shapiro JH; Wong FNC
    Phys Rev Lett; 2021 Aug; 127(9):093603. PubMed ID: 34506171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-alphabet quantum key distribution using energy-time entangled bipartite States.
    Ali-Khan I; Broadbent CJ; Howell JC
    Phys Rev Lett; 2007 Feb; 98(6):060503. PubMed ID: 17358925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconditional security of single-photon differential phase shift quantum key distribution.
    Wen K; Tamaki K; Yamamoto Y
    Phys Rev Lett; 2009 Oct; 103(17):170503. PubMed ID: 19905739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and efficient quantum key distribution with parametric down-conversion.
    Adachi Y; Yamamoto T; Koashi M; Imoto N
    Phys Rev Lett; 2007 Nov; 99(18):180503. PubMed ID: 17995389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-locked key distribution at nearly the classical capacity rate.
    Lupo C; Lloyd S
    Phys Rev Lett; 2014 Oct; 113(16):160502. PubMed ID: 25361242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composable security proof for continuous-variable quantum key distribution with coherent States.
    Leverrier A
    Phys Rev Lett; 2015 Feb; 114(7):070501. PubMed ID: 25763943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-distance entanglement-based quantum key distribution experiment using practical detectors.
    Takesue H; Harada K; Tamaki K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Itabashi S
    Opt Express; 2010 Aug; 18(16):16777-87. PubMed ID: 20721069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-distance decoy-state quantum key distribution in optical fiber.
    Rosenberg D; Harrington JW; Rice PR; Hiskett PA; Peterson CG; Hughes RJ; Lita AE; Nam SW; Nordholt JE
    Phys Rev Lett; 2007 Jan; 98(1):010503. PubMed ID: 17358462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.
    Kwon O; Park KK; Ra YS; Kim YS; Kim YH
    Opt Express; 2013 Oct; 21(21):25492-500. PubMed ID: 24150388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One Step Quantum Key Distribution Based on EPR Entanglement.
    Li J; Li N; Li LL; Wang T
    Sci Rep; 2016 Jun; 6():28767. PubMed ID: 27357865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement-based quantum key distribution with biased basis choice via free space.
    Cao Y; Liang H; Yin J; Yong HL; Zhou F; Wu YP; Ren JG; Li YH; Pan GS; Yang T; Ma X; Peng CZ; Pan JW
    Opt Express; 2013 Nov; 21(22):27260-8. PubMed ID: 24216948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-distance entanglement-based quantum key distribution over optical fiber.
    Honjo T; Nam SW; Takesue H; Zhang Q; Kamada H; Nishida Y; Tadanaga O; Asobe M; Baek B; Hadfield R; Miki S; Fujiwara M; Sasaki M; Wang Z; Inoue K; Yamamoto Y
    Opt Express; 2008 Nov; 16(23):19118-26. PubMed ID: 19582004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.
    Gleim AV; Egorov VI; Nazarov YV; Smirnov SV; Chistyakov VV; Bannik OI; Anisimov AA; Kynev SM; Ivanova AE; Collins RJ; Kozlov SA; Buller GS
    Opt Express; 2016 Feb; 24(3):2619-33. PubMed ID: 26906834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient single-spatial-mode periodically-poled KTiOPO4 waveguide source for high-dimensional entanglement-based quantum key distribution.
    Zhong T; Wong FN; Restelli A; Bienfang JC
    Opt Express; 2012 Nov; 20(24):26868-77. PubMed ID: 23187540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental quantum key distribution with decoy states.
    Zhao Y; Qi B; Ma X; Lo HK; Qian L
    Phys Rev Lett; 2006 Feb; 96(7):070502. PubMed ID: 16606067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detector-decoy high-dimensional quantum key distribution.
    Bao H; Bao W; Wang Y; Chen R; Zhou C; Jiang M; Li H
    Opt Express; 2016 Sep; 24(19):22159-68. PubMed ID: 27661950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source.
    Wang Q; Chen W; Xavier G; Swillo M; Zhang T; Sauge S; Tengner M; Han ZF; Guo GC; Karlsson A
    Phys Rev Lett; 2008 Mar; 100(9):090501. PubMed ID: 18352685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental measurement-device-independent quantum key distribution.
    Liu Y; Chen TY; Wang LJ; Liang H; Shentu GL; Wang J; Cui K; Yin HL; Liu NL; Li L; Ma X; Pelc JS; Fejer MM; Peng CZ; Zhang Q; Pan JW
    Phys Rev Lett; 2013 Sep; 111(13):130502. PubMed ID: 24116758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-dimensional entanglement distribution over 100 km.
    Ikuta T; Takesue H
    Sci Rep; 2018 Jan; 8(1):817. PubMed ID: 29339764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.