These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24724648)

  • 1. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator.
    Allman MS; Whittaker JD; Castellanos-Beltran M; Cicak K; da Silva F; DeFeo MP; Lecocq F; Sirois A; Teufel JD; Aumentado J; Simmonds RW
    Phys Rev Lett; 2014 Mar; 112(12):123601. PubMed ID: 24724648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.
    Allman MS; Altomare F; Whittaker JD; Cicak K; Li D; Sirois A; Strong J; Teufel JD; Simmonds RW
    Phys Rev Lett; 2010 Apr; 104(17):177004. PubMed ID: 20482130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal Stabilization of a Parametrically Coupled Qubit.
    Lu Y; Chakram S; Leung N; Earnest N; Naik RK; Huang Z; Groszkowski P; Kapit E; Koch J; Schuster DI
    Phys Rev Lett; 2017 Oct; 119(15):150502. PubMed ID: 29077454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit.
    Bøttcher CGL; Harvey SP; Fallahi S; Gardner GC; Manfra MJ; Vool U; Bartlett SD; Yacoby A
    Nat Commun; 2022 Aug; 13(1):4773. PubMed ID: 35970821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broken selection rule in the quantum Rabi model.
    Forn-Díaz P; Romero G; Harmans CJ; Solano E; Mooij JE
    Sci Rep; 2016 Jun; 6():26720. PubMed ID: 27273346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual-photon-mediated spin-qubit-transmon coupling.
    Landig AJ; Koski JV; Scarlino P; Müller C; Abadillo-Uriel JC; Kratochwil B; Reichl C; Wegscheider W; Coppersmith SN; Friesen M; Wallraff A; Ihn T; Ensslin K
    Nat Commun; 2019 Nov; 10(1):5037. PubMed ID: 31695044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials.
    Kim S; Shrekenhamer D; McElroy K; Strikwerda A; Alldredge J
    Sci Rep; 2019 Mar; 9(1):4630. PubMed ID: 30874574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.
    Srinivasan SJ; Hoffman AJ; Gambetta JM; Houck AA
    Phys Rev Lett; 2011 Feb; 106(8):083601. PubMed ID: 21405571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Dispersive Measurements of Flux-Qubit States: Energy-Level Splitting Connected to Quantum Wave Mechanics.
    Choi JR
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of strong nonlinearity in radio-frequency superconducting-quantum-interference-device meta-atoms.
    Zack E; Zhang D; Trepanier M; Cai J; Tai T; Lazarides N; Hizanidis J; Anlage SM
    Phys Rev E; 2022 Apr; 105(4-1):044202. PubMed ID: 35590567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sisyphus effects in a microwave-excited flux-qubit resonator system.
    Skinner JC; Prance H; Stiffell PB; Prance RJ
    Phys Rev Lett; 2010 Dec; 105(25):257002. PubMed ID: 21231614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong tunable coupling between a superconducting charge and phase qubit.
    Fay A; Hoskinson E; Lecocq F; Lévy LP; Hekking FW; Guichard W; Buisson O
    Phys Rev Lett; 2008 May; 100(18):187003. PubMed ID: 18518410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconducting qubit with Purcell protection and tunable coupling.
    Gambetta JM; Houck AA; Blais A
    Phys Rev Lett; 2011 Jan; 106(3):030502. PubMed ID: 21405262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable backaction of a DC SQUID on an integrated micromechanical resonator.
    Poot M; Etaki S; Mahboob I; Onomitsu K; Yamaguchi H; Blanter YM; van der Zant HS
    Phys Rev Lett; 2010 Nov; 105(20):207203. PubMed ID: 21231261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime.
    Forn-Díaz P; Lisenfeld J; Marcos D; García-Ripoll JJ; Solano E; Harmans CJ; Mooij JE
    Phys Rev Lett; 2010 Dec; 105(23):237001. PubMed ID: 21231496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
    Moores BA; Sletten LR; Viennot JJ; Lehnert KW
    Phys Rev Lett; 2018 Jun; 120(22):227701. PubMed ID: 29906138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the symmetry breaking of a light-matter system by an ancillary qubit.
    Wang SP; Ridolfo A; Li T; Savasta S; Nori F; Nakamura Y; You JQ
    Nat Commun; 2023 Jul; 14(1):4397. PubMed ID: 37474535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong coupling of spin qubits to a transmission line resonator.
    Jin PQ; Marthaler M; Shnirman A; Schön G
    Phys Rev Lett; 2012 May; 108(19):190506. PubMed ID: 23003017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable quantum memory in the ultrastrong coupling regime.
    Kyaw TH; Felicetti S; Romero G; Solano E; Kwek LC
    Sci Rep; 2015 Mar; 5():8621. PubMed ID: 25727251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable coupling of superconducting flux qubits.
    van der Ploeg SH; Izmalkov A; van den Brink AM; Hübner U; Grajcar M; Il'ichev E; Meyer HG; Zagoskin AM
    Phys Rev Lett; 2007 Feb; 98(5):057004. PubMed ID: 17358887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.