These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24724683)
41. ac Electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications. Zhao C; Yang C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066304. PubMed ID: 21797474 [TBL] [Abstract][Full Text] [Related]
42. Electrophoretic motion of a spherical particle in a converging-diverging nanotube. Qian S; Wang A; Afonien JK J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648 [TBL] [Abstract][Full Text] [Related]
43. Induced charge electroosmosis micropumps using arrays of Janus micropillars. Paustian JS; Pascall AJ; Wilson NM; Squires TM Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878 [TBL] [Abstract][Full Text] [Related]
45. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface. Mayur M; Amiroudine S; Lasseux D; Chakraborty S Electrophoresis; 2014 Mar; 35(5):670-80. PubMed ID: 24123086 [TBL] [Abstract][Full Text] [Related]
46. Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk systems. Soong CY; Wang SH J Colloid Interface Sci; 2004 Jan; 269(2):484-98. PubMed ID: 14654411 [TBL] [Abstract][Full Text] [Related]
47. Zig-zag arrangement of four electrodes for ac electro-osmotic micropumps. Hrdlička J; Cervenka P; Přibyl M; Snita D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016307. PubMed ID: 21867304 [TBL] [Abstract][Full Text] [Related]
48. Geometric dependence of the conductance drop in a nanopore due to a particle. Kim SC; Kannam SK; Harrer S; Downton MT; Moore S; Wagner JM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042702. PubMed ID: 24827273 [TBL] [Abstract][Full Text] [Related]
49. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Qian S; Joo SW; Ai Y; Cheney MA; Hou W J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486 [TBL] [Abstract][Full Text] [Related]
50. Investigation of the nonlinear effects during the sedimentation process of a charged colloidal particle by direct numerical simulation. Keller F; Feist M; Nirschl H; Dörfler W J Colloid Interface Sci; 2010 Apr; 344(1):228-36. PubMed ID: 20097350 [TBL] [Abstract][Full Text] [Related]
52. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy. Mansouri A; Bhattacharjee S; Kostiuk LW J Phys Chem B; 2007 Nov; 111(44):12834-43. PubMed ID: 17929961 [TBL] [Abstract][Full Text] [Related]
53. Electro-osmotic flow enhancement in carbon nanotube membranes. Mattia D; Leese H; Calabrò F Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712647 [TBL] [Abstract][Full Text] [Related]
54. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices. Jia M; Kim T Anal Chem; 2014 Aug; 86(15):7360-7. PubMed ID: 25033014 [TBL] [Abstract][Full Text] [Related]
55. Electrodiffusioosmosis induced negative differential resistance in micro-to-millimeter size pores through a graphene/copper membrane. Yadav SK; Manikandan D; Singh C; Kumar M; Nandigana VVR; Nayak PK Nanoscale Adv; 2022 Nov; 4(23):5123-5131. PubMed ID: 36504743 [TBL] [Abstract][Full Text] [Related]
56. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. Smiatek J; Sega M; Holm C; Schiller UD; Schmid F J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169 [TBL] [Abstract][Full Text] [Related]