These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24724741)

  • 1. Differential responses of three grapevine cultivars to Botryosphaeria dieback.
    Spagnolo A; Magnin-Robert M; Alayi TD; Cilindre C; Schaeffer-Reiss C; Van Dorsselaer A; Clément C; Larignon P; Ramirez-Suero M; Chong J; Bertsch C; Abou-Mansour E; Fontaine F
    Phytopathology; 2014 Oct; 104(10):1021-35. PubMed ID: 24724741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivar- and Wood Area-Dependent Metabolomic Fingerprints of Grapevine Infected by Botryosphaeria Dieback.
    Lemaitre-Guillier C; Fontaine F; Roullier-Gall C; Harir M; Magnin-Robert M; Clément C; Trouvelot S; Gougeon RD; Schmitt-Kopplin P; Adrian M
    Phytopathology; 2020 Nov; 110(11):1821-1837. PubMed ID: 32597304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells.
    Stempien E; Goddard ML; Leva Y; Bénard-Gellon M; Laloue H; Farine S; Kieffer-Mazet F; Tarnus C; Bertsch C; Chong J
    Protoplasma; 2018 Mar; 255(2):613-628. PubMed ID: 29043572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flowering as the most highly sensitive period of grapevine (Vitis vinifera L. cv Mourvèdre) to the Botryosphaeria dieback agents Neofusicoccum parvum and Diplodia seriata infection.
    Spagnolo A; Larignon P; Magnin-Robert M; Hovasse A; Cilindre C; Van Dorsselaer A; Clément C; Schaeffer-Reiss C; Fontaine F
    Int J Mol Sci; 2014 May; 15(6):9644-69. PubMed ID: 24886812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization.
    Stempien E; Goddard ML; Wilhelm K; Tarnus C; Bertsch C; Chong J
    PLoS One; 2017; 12(12):e0188766. PubMed ID: 29261692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells.
    Ramírez-Suero M; Bénard-Gellon M; Chong J; Laloue H; Stempien E; Abou-Mansour E; Fontaine F; Larignon P; Mazet-Kieffer F; Farine S; Bertsch C
    Protoplasma; 2014 Nov; 251(6):1417-26. PubMed ID: 24752796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of extracellular proteins from Diplodia seriata and Neofusicoccum parvum involved in grapevine Botryosphaeria dieback.
    Bénard-Gellon M; Farine S; Goddard ML; Schmitt M; Stempien E; Pensec F; Laloue H; Mazet-Kieffer F; Fontaine F; Larignon P; Chong J; Tarnus C; Bertsch C
    Protoplasma; 2015 Mar; 252(2):679-87. PubMed ID: 25323623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defense Responses in Grapevine (cv. Mourvèdre) after Inoculation with the Botryosphaeria Dieback Pathogens Neofusicoccum parvum and Diplodia seriata and Their Relationship with Flowering.
    Spagnolo A; Mondello V; Larignon P; Villaume S; Rabenoelina F; Clément C; Fontaine F
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine.
    Abou-Mansour E; Débieux JL; Ramírez-Suero M; Bénard-Gellon M; Magnin-Robert M; Spagnolo A; Chong J; Farine S; Bertsch C; L'Haridon F; Serrano M; Fontaine F; Rego C; Larignon P
    Phytochemistry; 2015 Jul; 115():207-15. PubMed ID: 25747381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Different Grapevine Cultivars to Infection by
    Reis P; Gaspar A; Alves A; Fontaine F; Rego C
    Plant Dis; 2022 May; 106(5):1350-1357. PubMed ID: 34879730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family.
    Lambert C; Bisson J; Waffo-Téguo P; Papastamoulis Y; Richard T; Corio-Costet MF; Mérillon JM; Cluzet S
    J Agric Food Chem; 2012 Dec; 60(48):11859-68. PubMed ID: 23145924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological changes in green stems of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses.
    Spagnolo A; Magnin-Robert M; Alayi TD; Cilindre C; Mercier L; Schaeffer-Reiss C; Van Dorsselaer A; Clément C; Fontaine F
    J Proteome Res; 2012 Jan; 11(1):461-75. PubMed ID: 22050466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic Responses to Esca-Associated Fungi in Differently Decayed Grapevine Woods from Different Trunk Parts of 'Cabernet Sauvignon'.
    Rusjan D; Persic M; Likar M; Biniari K; Mikulic-Petkovsek M
    J Agric Food Chem; 2017 Aug; 65(31):6615-6624. PubMed ID: 28692264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response.
    Paolinelli-Alfonso M; Villalobos-Escobedo JM; Rolshausen P; Herrera-Estrella A; Galindo-Sánchez C; López-Hernández JF; Hernandez-Martinez R
    BMC Genomics; 2016 Aug; 17(1):615. PubMed ID: 27514986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents.
    Mondello V; Songy A; Battiston E; Pinto C; Coppin C; Trotel-Aziz P; Clément C; Mugnai L; Fontaine F
    Plant Dis; 2018 Jul; 102(7):1189-1217. PubMed ID: 30673583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens.
    Morales-Cruz A; Amrine KC; Blanco-Ulate B; Lawrence DP; Travadon R; Rolshausen PE; Baumgartner K; Cantu D
    BMC Genomics; 2015 Jun; 16(1):469. PubMed ID: 26084502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Reproductive Structures Induction of Fungal Pathogens Associated with Xylem and Wood Necrosis in Grapevine.
    López-Moral A; Agustí-Brisach C
    Methods Mol Biol; 2024; 2722():107-115. PubMed ID: 37897603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Plant Metabolism and Accumulation of Fungal Metabolites in Response to Esca Proper and Apoplexy Expression in the Whole Grapevine.
    Magnin-Robert M; Spagnolo A; Boulanger A; Joyeux C; Clément C; Abou-Mansour E; Fontaine F
    Phytopathology; 2016 Jun; 106(6):541-53. PubMed ID: 26882851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual RNA Sequencing of
    Gonçalves MFM; Nunes RB; Tilleman L; Van de Peer Y; Deforce D; Van Nieuwerburgh F; Esteves AC; Alves A
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816814
    [No Abstract]   [Full Text] [Related]  

  • 20. Susceptibility of Cultivated and Wild Vitis spp. to Wood Infection by Fungal Trunk Pathogens.
    Travadon R; Rolshausen PE; Gubler WD; Cadle-Davidson L; Baumgartner K
    Plant Dis; 2013 Dec; 97(12):1529-1536. PubMed ID: 30716856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.