BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24725084)

  • 1. COP9 subunits 4 and 5 target soluble guanylyl cyclase α1 and p53 in prostate cancer cells.
    Bhansali M; Shemshedini L
    Mol Endocrinol; 2014 Jun; 28(6):834-45. PubMed ID: 24725084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble guanylyl cyclase α1 and p53 cytoplasmic sequestration and down-regulation in prostate cancer.
    Cai C; Hsieh CL; Gao S; Kannan A; Bhansali M; Govardhan K; Dutta R; Shemshedini L
    Mol Endocrinol; 2012 Feb; 26(2):292-307. PubMed ID: 22174378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgen regulation of soluble guanylyl cyclasealpha1 mediates prostate cancer cell proliferation.
    Cai C; Chen SY; Zheng Z; Omwancha J; Lin MF; Balk SP; Shemshedini L
    Oncogene; 2007 Mar; 26(11):1606-15. PubMed ID: 16964290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A peptide against soluble guanylyl cyclase α1: a new approach to treating prostate cancer.
    Gao S; Hsieh CL; Bhansali M; Kannan A; Shemshedini L
    PLoS One; 2013; 8(5):e64189. PubMed ID: 23724033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells.
    Gao S; Hsieh CL; Zhou J; Shemshedini L
    PLoS One; 2013; 8(11):e78766. PubMed ID: 24236047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide B targets soluble guanylyl cyclase α1 and kills prostate cancer cells.
    Zhou J; Gao S; Hsieh CL; Malla M; Shemshedini L
    PLoS One; 2017; 12(8):e0184088. PubMed ID: 28859127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the JNK inhibitor anthra[1,9-cd]pyrazol-6(2H)-one (SP-600125) on soluble guanylyl cyclase alpha1 gene regulation and cGMP synthesis.
    Krumenacker JS; Kots A; Murad F
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C778-84. PubMed ID: 15888553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia.
    Vermeersch P; Buys E; Pokreisz P; Marsboom G; Ichinose F; Sips P; Pellens M; Gillijns H; Swinnen M; Graveline A; Collen D; Dewerchin M; Brouckaert P; Bloch KD; Janssens S
    Circulation; 2007 Aug; 116(8):936-43. PubMed ID: 17679618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment.
    Zhang QY; Jin R; Zhang X; Sheng JP; Yu F; Tan RX; Pan Y; Huang JJ; Kong LD
    Oncotarget; 2016 Oct; 7(43):69688-69702. PubMed ID: 27626169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevation of soluble guanylate cyclase suppresses proliferation and survival of human breast cancer cells.
    Wen HC; Chuu CP; Chen CY; Shiah SG; Kung HJ; King KL; Su LC; Chang SC; Chang CH
    PLoS One; 2015; 10(4):e0125518. PubMed ID: 25928539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex.
    Tomoda K; Kubota Y; Arata Y; Mori S; Maeda M; Tanaka T; Yoshida M; Yoneda-Kato N; Kato JY
    J Biol Chem; 2002 Jan; 277(3):2302-10. PubMed ID: 11704659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for CSN5 in control of p53/MDM2 activities.
    Zhang XC; Chen J; Su CH; Yang HY; Lee MH
    J Cell Biochem; 2008 Mar; 103(4):1219-30. PubMed ID: 17879958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of CSN4 knockdown on proliferation and apoptosis of breast cancer MDA-MB-231 cells].
    Yu TL; Cai DL; Zhu GF; Ye XJ; Min TS; Chen HY; Lu DR; Chen HM
    Yi Chuan; 2019 Apr; 41(4):318-326. PubMed ID: 30992253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COP9 Signalosome CSN4 and CSN5 Subunits Are Involved in Jasmonate-Dependent Defense Against Root-Knot Nematode in Tomato.
    Shang Y; Wang K; Sun S; Zhou J; Yu JQ
    Front Plant Sci; 2019; 10():1223. PubMed ID: 31649695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender-specific hypertension and responsiveness to nitric oxide in sGCalpha1 knockout mice.
    Buys ES; Sips P; Vermeersch P; Raher MJ; Rogge E; Ichinose F; Dewerchin M; Bloch KD; Janssens S; Brouckaert P
    Cardiovasc Res; 2008 Jul; 79(1):179-86. PubMed ID: 18339647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble guanylyl cyclase α1 subunit is a key mediator of proliferation, survival, and migration in ECC-1 and HeLa cell lines.
    Ronchetti SA; Pino MTL; Cordeiro G; Bollani SN; Ricci AG; Duvilanski BH; Cabilla JP
    Sci Rep; 2019 Oct; 9(1):14797. PubMed ID: 31616026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The organization of a CSN5-containing subcomplex of the COP9 signalosome.
    Kotiguda GG; Weinberg D; Dessau M; Salvi C; Serino G; Chamovitz DA; Hirsch JA
    J Biol Chem; 2012 Dec; 287(50):42031-41. PubMed ID: 23086934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Notch activation augments nitric oxide/soluble guanylyl cyclase signaling in immortalized ovarian surface epithelial cells and ovarian cancer cells.
    El-Sehemy A; Chang AC; Azad AK; Gupta N; Xu Z; Steed H; Karsan A; Fu Y
    Cell Signal; 2013 Dec; 25(12):2780-7. PubMed ID: 24041655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.
    Hsieh CL; Cai C; Giwa A; Bivins A; Chen SY; Sabry D; Govardhan K; Shemshedini L
    J Mol Endocrinol; 2008 Jul; 41(1):13-23. PubMed ID: 18469090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of COP9 signalosome in cancer.
    Lee MH; Zhao R; Phan L; Yeung SC
    Cell Cycle; 2011 Sep; 10(18):3057-66. PubMed ID: 21876386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.