These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 24725177)
1. Characterization of the immersion properties of the peripheral membrane anchor of the FATC domain of the kinase "target of rapamycin" by NMR, oriented CD spectroscopy, and MD simulations. Sommer LA; Janke JJ; Bennett WF; Bürck J; Ulrich AS; Tieleman DP; Dames SA J Phys Chem B; 2014 May; 118(18):4817-31. PubMed ID: 24725177 [TBL] [Abstract][Full Text] [Related]
2. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy. Sommer LA; Dames SA FEBS Lett; 2014 May; 588(9):1755-66. PubMed ID: 24704685 [TBL] [Abstract][Full Text] [Related]
3. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study. De Cicco M; Milroy LG; Dames SA Protein Sci; 2018 Feb; 27(2):546-560. PubMed ID: 29024217 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles. Dames SA J Biol Chem; 2010 Mar; 285(10):7766-75. PubMed ID: 20042596 [TBL] [Abstract][Full Text] [Related]
5. NMR- and circular dichroism-monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3-kinase-related kinases (PIKK). Sommer LA; Schaad M; Dames SA J Biol Chem; 2013 Jul; 288(27):20046-63. PubMed ID: 23671275 [TBL] [Abstract][Full Text] [Related]
6. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. Dames SA; Mulet JM; Rathgeb-Szabo K; Hall MN; Grzesiek S J Biol Chem; 2005 May; 280(21):20558-64. PubMed ID: 15772072 [TBL] [Abstract][Full Text] [Related]
7. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Bhunia A; Domadia PN; Mohanram H; Bhattacharjya S Proteins; 2009 Feb; 74(2):328-43. PubMed ID: 18618697 [TBL] [Abstract][Full Text] [Related]
8. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. Bader R; Bettio A; Beck-Sickinger AG; Zerbe O J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908 [TBL] [Abstract][Full Text] [Related]
9. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated. Abd Rahim MS; Cherniavskyi YK; Tieleman DP; Dames SA J Biol Chem; 2019 Apr; 294(17):7098-7112. PubMed ID: 30867195 [TBL] [Abstract][Full Text] [Related]
10. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid. Rodriguez Camargo DC; Link NM; Dames SA Biochemistry; 2012 Jun; 51(24):4909-21. PubMed ID: 22620485 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain. Ruan KH; Li D; Ji J; Lin YZ; Gao X Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571 [TBL] [Abstract][Full Text] [Related]
12. Structural determinants of the specificity of a membrane binding domain of the scaffold protein Ste5 of budding yeast: implications in signaling by the scaffold protein in MAPK pathway. Bhunia A; Mohanram H; Bhattacharjya S Biochim Biophys Acta; 2012 May; 1818(5):1250-60. PubMed ID: 22285780 [TBL] [Abstract][Full Text] [Related]
13. Rahim MSA; Sommer LAM; Wacker A; Schaad M; Dames SA Biomol NMR Assign; 2018 Apr; 12(1):149-154. PubMed ID: 29349619 [TBL] [Abstract][Full Text] [Related]
14. Solution nuclear magnetic resonance structure and molecular dynamics simulations of a murine 18.5 kDa myelin basic protein segment (S72-S107) in association with dodecylphosphocholine micelles. Ahmed MA; De Avila M; Polverini E; Bessonov K; Bamm VV; Harauz G Biochemistry; 2012 Sep; 51(38):7475-87. PubMed ID: 22947219 [TBL] [Abstract][Full Text] [Related]
16. Micellar environments induce structuring of the N-terminal tail of the prion protein. Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659 [TBL] [Abstract][Full Text] [Related]
17. Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. Le Lan C; Neumann JM; Jamin N FEBS Lett; 2006 Oct; 580(22):5301-5. PubMed ID: 16979631 [TBL] [Abstract][Full Text] [Related]
18. NMR structural characterization of HIV-1 virus protein U cytoplasmic domain in the presence of dodecylphosphatidylcholine micelles. Wittlich M; Koenig BW; Stoldt M; Schmidt H; Willbold D FEBS J; 2009 Nov; 276(22):6560-75. PubMed ID: 19804408 [TBL] [Abstract][Full Text] [Related]
19. Understanding the interaction between valsartan and detergents by NMR techniques and molecular dynamics simulation. Cao C; Mao J; Li F; Yang M; He H; Jiang L; Liu M J Phys Chem B; 2012 Jun; 116(25):7470-8. PubMed ID: 22708715 [TBL] [Abstract][Full Text] [Related]
20. NMR solution structure and position of transportan in neutral phospholipid bicelles. Bárány-Wallje E; Andersson A; Gräslund A; Mäler L FEBS Lett; 2004 Jun; 567(2-3):265-9. PubMed ID: 15178334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]