These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24725256)

  • 21. Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata.
    Thierry A; Bouchier C; Dujon B; Richard GF
    Nucleic Acids Res; 2008 Oct; 36(18):5970-82. PubMed ID: 18812401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global identification of transcription start sites in the genome of Apis mellifera using 5'LongSAGE.
    Zheng H; Sun L; Peng W; Shen Y; Wang Y; Xu B; Gu W; Chen S; Huang Z; Wang S
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):500-14. PubMed ID: 21695780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo generation of a phosphate starvation-regulated promoter in Candida glabrata.
    Kerwin CL; Wykoff DD
    FEMS Yeast Res; 2012 Dec; 12(8):980-9. PubMed ID: 22938599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity.
    Shor E; Perlin DS
    Curr Genet; 2021 Jun; 67(3):439-445. PubMed ID: 33620543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata.
    Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F
    Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling.
    Kim D; Hong JS; Qiu Y; Nagarajan H; Seo JH; Cho BK; Tsai SF; Palsson BØ
    PLoS Genet; 2012; 8(8):e1002867. PubMed ID: 22912590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata.
    Xu N; Liu L; Zou W; Liu J; Hua Q; Chen J
    Mol Biosyst; 2013 Feb; 9(2):205-16. PubMed ID: 23172360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome.
    Miura F; Kawaguchi N; Sese J; Toyoda A; Hattori M; Morishita S; Ito T
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17846-51. PubMed ID: 17101987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pervasive and dynamic transcription initiation in
    Lu Z; Lin Z
    Genome Res; 2019 Jul; 29(7):1198-1210. PubMed ID: 31076411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter.
    Nishikawa A; Mendez B; Jigami Y; Dean N
    Yeast; 2002 Jun; 19(8):691-8. PubMed ID: 12185838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide profiling of untranslated regions by paired-end ditag sequencing reveals unexpected transcriptome complexity in yeast.
    Kang YN; Lai DP; Ooi HS; Shen TT; Kou Y; Tian J; Czajkowsky DM; Shao Z; Zhao X
    Mol Genet Genomics; 2015 Feb; 290(1):217-24. PubMed ID: 25213602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A surprisingly large RNase P RNA in Candida glabrata.
    Kachouri R; Stribinskis V; Zhu Y; Ramos KS; Westhof E; Li Y
    RNA; 2005 Jul; 11(7):1064-72. PubMed ID: 15987816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome structure and dynamics of the yeast pathogen Candida glabrata.
    Ahmad KM; Kokošar J; Guo X; Gu Z; Ishchuk OP; Piškur J
    FEMS Yeast Res; 2014 Jun; 14(4):529-35. PubMed ID: 24528571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata.
    Ueno K; Uno J; Nakayama H; Sasamoto K; Mikami Y; Chibana H
    Eukaryot Cell; 2007 Jul; 6(7):1239-47. PubMed ID: 17513567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping of transcription start sites in Saccharomyces cerevisiae using 5' SAGE.
    Zhang Z; Dietrich FS
    Nucleic Acids Res; 2005; 33(9):2838-51. PubMed ID: 15905473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists.
    Gattiker A; Rischatsch R; Demougin P; Voegeli S; Dietrich FS; Philippsen P; Primig M
    BMC Genomics; 2007 Jan; 8():9. PubMed ID: 17212814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A bunch of fun-guys: the whole-genome view of yeast evolution.
    Ochman H; Daubin V; Lerat E
    Trends Genet; 2005 Jan; 21(1):1-3. PubMed ID: 15680504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Virulence of the opportunistic pathogen mushroom Candida glabrata].
    Castaño I; Cormack B; De Las Peñas A
    Rev Latinoam Microbiol; 2006; 48(2):66-9. PubMed ID: 17578074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.
    Ringnér M; Krogh M
    PLoS Comput Biol; 2005 Dec; 1(7):e72. PubMed ID: 16355254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.