BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24725646)

  • 1. Properties of Langmuir and solid supported lipid films with sphingomyelin.
    Jurak M; Golabek M; Holysz L; Chibowski E
    Adv Colloid Interface Sci; 2015 Aug; 222():385-97. PubMed ID: 24725646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of beta-cyclodextrin with model lipid membranes.
    Flasiński M; Broniatowski M; Majewski J; Dynarowicz-Łatka P
    J Colloid Interface Sci; 2010 Aug; 348(2):511-21. PubMed ID: 20493495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence.
    DeWitt BN; Dunn RC
    Langmuir; 2015 Jan; 31(3):995-1004. PubMed ID: 25531175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers.
    Wnętrzak A; Makyła-Juzak K; Chachaj-Brekiesz A; Lipiec E; Romeu NV; Dynarowicz-Latka P
    Colloids Surf B Biointerfaces; 2018 Jun; 166():286-294. PubMed ID: 29604571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems.
    Guo W; Kurze V; Huber T; Afdhal NH; Beyer K; Hamilton JA
    Biophys J; 2002 Sep; 83(3):1465-78. PubMed ID: 12202372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study.
    Vázquez RF; Daza Millone MA; Pavinatto FJ; Fanani ML; Oliveira ON; Vela ME; Maté SM
    Colloids Surf B Biointerfaces; 2019 Jan; 173():549-556. PubMed ID: 30347381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation?
    Shaikh SR; Brzustowicz MR; Gustafson N; Stillwell W; Wassall SR
    Biochemistry; 2002 Aug; 41(34):10593-602. PubMed ID: 12186543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The magnitude of condensation induced by cholesterol on the mixtures of sphingomyelin with phosphatidylcholines-Study on ternary and quaternary systems.
    Wydro P
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):594-601. PubMed ID: 21074382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on β-sitosterol and ceramide-induced alterations in the properties of cholesterol/sphingomyelin/ganglioside monolayers.
    Hąc-Wydro K
    Biochim Biophys Acta; 2013 Nov; 1828(11):2460-9. PubMed ID: 23838269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.
    Ando J; Kinoshita M; Cui J; Yamakoshi H; Dodo K; Fujita K; Murata M; Sodeoka M
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4558-63. PubMed ID: 25825736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N; Okazaki H; Nomura K; Murata M
    Chem Phys Lipids; 2011 Jul; 164(5):401-8. PubMed ID: 21664344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine.
    Pandit SA; Jakobsson E; Scott HL
    Biophys J; 2004 Nov; 87(5):3312-22. PubMed ID: 15339797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edelfosine disturbs the sphingomyelin-cholesterol model membrane system in a cholesterol-dependent way - the Langmuir monolayer study.
    Hąc-Wydro K; Dynarowicz-Łątka P; Wydro P; Bąk K
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):635-40. PubMed ID: 21862295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir-Blodgett monolayer study.
    Jurak M
    J Phys Chem B; 2013 Apr; 117(13):3496-502. PubMed ID: 23470025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers.
    Zaborowska M; Broniatowski M; Fontaine P; Bilewicz R; Matyszewska D
    J Phys Chem B; 2023 Aug; 127(32):7135-7147. PubMed ID: 37551973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies.
    Zaborowska M; Dziubak D; Matyszewska D; Sek S; Bilewicz R
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC; Futerman AH; Prieto M
    Biophys J; 2009 Apr; 96(8):3210-22. PubMed ID: 19383465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of sphingomyelin-cholesterol conjugates and their formation of ordered membranes.
    Matsumori N; Tanada N; Nozu K; Okazaki H; Oishi T; Murata M
    Chemistry; 2011 Jul; 17(31):8568-75. PubMed ID: 21728198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laurdan emission study of the cholesterol-like effect of long-chain alkylresorcinols on the structure of dipalmitoylphosphocholine and sphingomyelin membranes.
    Zawilska P; Cieślik-Boczula K
    Biophys Chem; 2017 Feb; 221():1-9. PubMed ID: 27865129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.