These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 24725768)
1. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity. Cantarel BL; Weaver D; McNeill N; Zhang J; Mackey AJ; Reese J BMC Bioinformatics; 2014 Apr; 15():104. PubMed ID: 24725768 [TBL] [Abstract][Full Text] [Related]
2. Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome variant genotypes. Trubetskoy V; Rodriguez A; Dave U; Campbell N; Crawford EL; Cook EH; Sutcliffe JS; Foster I; Madduri R; Cox NJ; Davis LK Bioinformatics; 2015 Jan; 31(2):187-93. PubMed ID: 25270638 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of variant calling tools for large plant genome re-sequencing. Yao Z; You FM; N'Diaye A; Knox RE; McCartney C; Hiebert CW; Pozniak C; Xu W BMC Bioinformatics; 2020 Aug; 21(1):360. PubMed ID: 32807073 [TBL] [Abstract][Full Text] [Related]
4. Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers. Hofmann AL; Behr J; Singer J; Kuipers J; Beisel C; Schraml P; Moch H; Beerenwinkel N BMC Bioinformatics; 2017 Jan; 18(1):8. PubMed ID: 28049408 [TBL] [Abstract][Full Text] [Related]
5. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Hwang S; Kim E; Lee I; Marcotte EM Sci Rep; 2015 Dec; 5():17875. PubMed ID: 26639839 [TBL] [Abstract][Full Text] [Related]
6. Impact of post-alignment processing in variant discovery from whole exome data. Tian S; Yan H; Kalmbach M; Slager SL BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037 [TBL] [Abstract][Full Text] [Related]
7. VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering. Gézsi A; Bolgár B; Marx P; Sarkozy P; Szalai C; Antal P BMC Genomics; 2015 Oct; 16():875. PubMed ID: 26510841 [TBL] [Abstract][Full Text] [Related]
8. Benchmarking workflows to assess performance and suitability of germline variant calling pipelines in clinical diagnostic assays. Krishnan V; Utiramerur S; Ng Z; Datta S; Snyder MP; Ashley EA BMC Bioinformatics; 2021 Feb; 22(1):85. PubMed ID: 33627090 [TBL] [Abstract][Full Text] [Related]
9. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals. Cheng AY; Teo YY; Ong RT Bioinformatics; 2014 Jun; 30(12):1707-13. PubMed ID: 24558117 [TBL] [Abstract][Full Text] [Related]
10. Comparing the performance of selected variant callers using synthetic data and genome segmentation. Bian X; Zhu B; Wang M; Hu Y; Chen Q; Nguyen C; Hicks B; Meerzaman D BMC Bioinformatics; 2018 Nov; 19(1):429. PubMed ID: 30453880 [TBL] [Abstract][Full Text] [Related]
11. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. do Valle ÍF; Giampieri E; Simonetti G; Padella A; Manfrini M; Ferrari A; Papayannidis C; Zironi I; Garonzi M; Bernardi S; Delledonne M; Martinelli G; Remondini D; Castellani G BMC Bioinformatics; 2016 Nov; 17(Suppl 12):341. PubMed ID: 28185561 [TBL] [Abstract][Full Text] [Related]
12. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data. Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA; Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032 [TBL] [Abstract][Full Text] [Related]
13. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery. Barbitoff YA; Abasov R; Tvorogova VE; Glotov AS; Predeus AV BMC Genomics; 2022 Feb; 23(1):155. PubMed ID: 35193511 [TBL] [Abstract][Full Text] [Related]
14. Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers. Callari M; Sammut SJ; De Mattos-Arruda L; Bruna A; Rueda OM; Chin SF; Caldas C Genome Med; 2017 Apr; 9(1):35. PubMed ID: 28420412 [TBL] [Abstract][Full Text] [Related]
15. A SNP discovery method to assess variant allele probability from next-generation resequencing data. Shen Y; Wan Z; Coarfa C; Drabek R; Chen L; Ostrowski EA; Liu Y; Weinstock GM; Wheeler DA; Gibbs RA; Yu F Genome Res; 2010 Feb; 20(2):273-80. PubMed ID: 20019143 [TBL] [Abstract][Full Text] [Related]
16. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken. Ni G; Strom TM; Pausch H; Reimer C; Preisinger R; Simianer H; Erbe M BMC Genomics; 2015 Oct; 16():824. PubMed ID: 26486989 [TBL] [Abstract][Full Text] [Related]
17. Calling known variants and identifying new variants while rapidly aligning sequence data. VanRaden PM; Bickhart DM; O'Connell JR J Dairy Sci; 2019 Apr; 102(4):3216-3229. PubMed ID: 30772032 [TBL] [Abstract][Full Text] [Related]
18. Detailed comparison of two popular variant calling packages for exome and targeted exon studies. Warden CD; Adamson AW; Neuhausen SL; Wu X PeerJ; 2014; 2():e600. PubMed ID: 25289185 [TBL] [Abstract][Full Text] [Related]
19. An analytical workflow for accurate variant discovery in highly divergent regions. Tian S; Yan H; Neuhauser C; Slager SL BMC Genomics; 2016 Sep; 17(1):703. PubMed ID: 27590916 [TBL] [Abstract][Full Text] [Related]
20. Best practices for benchmarking germline small-variant calls in human genomes. Krusche P; Trigg L; Boutros PC; Mason CE; De La Vega FM; Moore BL; Gonzalez-Porta M; Eberle MA; Tezak Z; Lababidi S; Truty R; Asimenos G; Funke B; Fleharty M; Chapman BA; Salit M; Zook JM; Nat Biotechnol; 2019 May; 37(5):555-560. PubMed ID: 30858580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]