BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 24725964)

  • 1. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.
    Ishida Y; Nguyen TTM; Izawa S
    J Biotechnol; 2017 Jun; 252():65-72. PubMed ID: 28458045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae.
    Cao W; Zhao W; Yang B; Wang X; Shen Y; Wei T; Qin W; Li Z; Bao X
    Microb Cell Fact; 2021 Jul; 20(1):142. PubMed ID: 34301255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Yoshikawa Y; Nasuno R; Takagi H
    Yeast; 2021 Jul; 38(7):414-423. PubMed ID: 33648021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae.
    Liu ZL; Huang X; Zhou Q; Xu J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    Heer D; Heine D; Sauer U
    Appl Environ Microbiol; 2009 Dec; 75(24):7631-8. PubMed ID: 19854918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.
    Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J
    J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis.
    Saliola M; Scappucci G; De Maria I; Lodi T; Mancini P; Falcone C
    Eukaryot Cell; 2007 Jan; 6(1):19-27. PubMed ID: 17085636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase abrogate p53 induced apoptosis in a yeast model: Possible implications for apoptosis resistance in cancer cells.
    Redhu AK; Bhat JP
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129504. PubMed ID: 31862471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae.
    Izawa S; Maeda K; Miki T; Mano J; Inoue Y; Kimura A
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):811-7. PubMed ID: 9480895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4].
    He Y; Zi L; Zhang B; Xu J; Wang D; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):906-915. PubMed ID: 29943536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes.
    Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K
    J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.