These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24726271)

  • 41. Cholemic transgenic mice: a novel animal model to investigate the effects of bile acids.
    Ljubuncic P; Yousef I; Bomzon A
    J Pharmacol Toxicol Methods; 2004; 50(3):231-5. PubMed ID: 15519910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Temporary external drainage of the bile as a method of preventing the hepatorenal syndrome].
    Shubin BM; Futorian ES
    Khirurgiia (Mosk); 1965 Jan; 41(1):84-6. PubMed ID: 5889288
    [No Abstract]   [Full Text] [Related]  

  • 43. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice.
    Isayama F; Hines IN; Kremer M; Milton RJ; Byrd CL; Perry AW; McKim SE; Parsons C; Rippe RA; Wheeler MD
    Am J Physiol Gastrointest Liver Physiol; 2006 Jun; 290(6):G1318-28. PubMed ID: 16439470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Copper and liver injury--experimental studies on the dogs with biliary obstruction and copper loading.
    Azumi N
    Hokkaido Igaku Zasshi; 1982 May; 57(3):331-49. PubMed ID: 7129350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Benefit of farnesoid X receptor inhibition in obstructive cholestasis.
    Stedman C; Liddle C; Coulter S; Sonoda J; Alvarez JG; Evans RM; Downes M
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11323-8. PubMed ID: 16844773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Role of Inflammation in the Mechanisms of Bile Acid-Induced Liver Damage.
    Cai SY; Boyer JL
    Dig Dis; 2017; 35(3):232-234. PubMed ID: 28249287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism.
    Chen P; Li J; Fan X; Zeng H; Deng R; Li D; Huang M; Bi H
    Eur J Pharmacol; 2015 Oct; 765():131-9. PubMed ID: 26297978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic capacity and cell metabolites of bile duct obstructed rat livers. Effect of free and conjugated dihydroxy bile acids.
    Liersch MA; Hesse W
    Acta Hepatogastroenterol (Stuttg); 1975 Oct; 22(5):281-9. PubMed ID: 1199667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study.
    Zecca E; De Luca D; Baroni S; Vento G; Tiberi E; Romagnoli C
    Pediatrics; 2008 Jan; 121(1):e146-9. PubMed ID: 18166532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo dynamic metabolic imaging of obstructive cholestasis in mice.
    Li FC; Liu Y; Huang GT; Chiou LL; Liang JH; Sun TL; Dong CY; Lee HS
    Am J Physiol Gastrointest Liver Physiol; 2009 May; 296(5):G1091-7. PubMed ID: 19246634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study of renal cholesterol and phospholipids after ligation of the common bile duct in rats].
    Toffano G; Bianchi G; Breda G; Farello G; Gandolfi P
    Chir Patol Sper; 1975 Oct; 23(5):295-9. PubMed ID: 1231980
    [No Abstract]   [Full Text] [Related]  

  • 52. Role of apoptosis in the remodeling of cholestatic liver injury following release of the mechanical stress.
    Costa AM; Tuchweber B; Lamireau T; Yousef IM; Balabaud C; Rosenbaum J; Desmoulière A
    Virchows Arch; 2003 Apr; 442(4):372-80. PubMed ID: 12715172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intraductal infusion of taurocholate followed by distal common bile duct ligation leads to a severe necrotic model of pancreatitis in mice.
    Le T; Eisses JF; Lemon KL; Ozolek JA; Pociask DA; Orabi AI; Husain SZ
    Pancreas; 2015 Apr; 44(3):493-9. PubMed ID: 25469547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bile acids in serum and bile of infants with cholestatic syndromes.
    Délèze G; Paumgartner G
    Helv Paediatr Acta; 1977 Jun; 32(1):29-38. PubMed ID: 617961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice.
    Tang X; Yang Q; Yang F; Gong J; Han H; Yang L; Wang Z
    J Ethnopharmacol; 2016 Dec; 194():63-71. PubMed ID: 27582267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury.
    Stedman CA; Liddle C; Coulter SA; Sonoda J; Alvarez JG; Moore DD; Evans RM; Downes M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):2063-8. PubMed ID: 15684063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats.
    Abdel Kawy HS
    Eur J Pharmacol; 2015 Apr; 752():8-17. PubMed ID: 25666386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytokeratins as targets for bile acid-induced toxicity.
    Fickert P; Trauner M; Fuchsbichler A; Stumptner C; Zatloukal K; Denk H
    Am J Pathol; 2002 Feb; 160(2):491-9. PubMed ID: 11839569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Pathophysiology of cholestasis: correlation between bile acid metabolism and liver damage].
    Stiehl A
    Z Gastroenterol; 1992 Mar; 30 Suppl 1():46-8. PubMed ID: 1449016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of renal tubular bile acid transport in the early phase of an obstructive cholestasis in the rat.
    Schlattjan JH; Winter C; Greven J
    Nephron Physiol; 2003; 95(3):p49-56. PubMed ID: 14646358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.