These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24726372)

  • 41. A new rearranged abietane diterpene from Clerodendrum inerme with antioxidant and cytotoxic activities.
    Ba Vinh L; Thi Minh Nguyet N; Young Yang S; Hoon Kim J; Thi Vien L; Thi Thanh Huong P; Van Thanh N; Xuan Cuong N; Hoai Nam N; Van Minh C; Hwang I; Ho Kim Y
    Nat Prod Res; 2018 Sep; 32(17):2001-2007. PubMed ID: 28793804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new triterpenoid bearing octacosanoate from the stems and roots of Clerodendrum philippinum var. simplex (Verbenaceae).
    Yue JR; Feng DQ; Xu YK
    Nat Prod Res; 2015; 29(13):1228-34. PubMed ID: 25801582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new monoterpenoid glycoside from Myrica esculenta and the inhibition of angiotensin I-converting enzyme.
    Nguyen XN; Phan VK; Chau VM; Bui HT; Nguyen XC; Vu KT; Hoang le TA; Jo SH; Jang HD; Kwon YI; Kim YH
    Chem Pharm Bull (Tokyo); 2010 Oct; 58(10):1408-10. PubMed ID: 20930414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. C
    Qin JJ; Chen X; Lin ZM; Xu YS; Li YM; Zuo JP; Zhao WM
    Fitoterapia; 2018 Jan; 124():193-199. PubMed ID: 29154862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three new abietane-type diterpene glycosides from the roots of Tripterygium wilfordii.
    Liu J; Wu Q; Shu J; Zhang R; Liu L
    Fitoterapia; 2017 Jul; 120():126-130. PubMed ID: 28602481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three acylated flavone glycosides from Sideritis ozturkii Aytac & Aksoy.
    Sahin FP; Taşdemir D; Rüedi P; Ezer N; Caliş I
    Phytochemistry; 2004 Jul; 65(14):2095-9. PubMed ID: 15279978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.
    Charles RE; Ponrasu T; Sivakumar R; Divakar S
    Biotechnol Appl Biochem; 2009 Mar; 52(Pt 3):177-84. PubMed ID: 18547170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum.
    Kang DG; Lee YS; Kim HJ; Lee YM; Lee HS
    J Ethnopharmacol; 2003 Nov; 89(1):151-4. PubMed ID: 14522447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Traditional uses and pharmacological properties of
    Wang JH; Luan F; He XD; Wang Y; Li MX
    J Tradit Complement Med; 2018 Jan; 8(1):24-38. PubMed ID: 29321986
    [No Abstract]   [Full Text] [Related]  

  • 50. Four New Diterpenoids from the Roots of Euphorbia pekinensis.
    Tian RY; Lu Y; Chen DF
    Chem Biodivers; 2016 Oct; 13(10):1404-1409. PubMed ID: 27447875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lavandulifolioside B: a new phenylethanoid glycoside from the aerial parts of Stachys lavandulifolia Vahl.
    Delazar A; Delnavazi MR; Nahar L; Moghadam SB; Mojarab M; Gupta A; Williams AS; Mukhlesur Rahman M; Sarker SD
    Nat Prod Res; 2011 Jan; 25(1):8-16. PubMed ID: 21240755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel rearranged abietane diterpenoids from the roots of Salvia sahendica.
    Jassbi AR; Mehrdad M; Eghtesadi F; Ebrahimi SN; Baldwin IT
    Chem Biodivers; 2006 Aug; 3(8):916-22. PubMed ID: 17193322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iridoid glycosides link with phenylpropanoids from
    Thu VK; Thoa NT; Hien NTT; Hang DTT; Kiem PV
    Nat Prod Res; 2022 Oct; 36(20):5370-5375. PubMed ID: 34039230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diterpenoids from the Roots of Euphorbia fischeriana with Inhibitory Effects on Nitric Oxide Production.
    Lee JW; Lee C; Jin Q; Jang H; Lee D; Lee HJ; Shin JW; Han SB; Hong JT; Kim Y; Lee MK; Hwang BY
    J Nat Prod; 2016 Jan; 79(1):126-31. PubMed ID: 26702644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two new abietane diterpenoid glycosides from Clinopodium chinense.
    Zhu YD; Zhang JY; Li PF; Wu HF; Zhu NL; Jiang H; Lv CY; Wu LL; Ma ZX; Xu XD; Ma GX; Yang JS
    Nat Prod Res; 2016; 30(9):1075-80. PubMed ID: 26551245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kaurane-type diterpenoids from Chromoleana odorata, their X-ray diffraction studies and potent α-glucosidase inhibition of 16-kauren-19-oic acid.
    Wafo P; Kamdem RS; Ali Z; Anjum S; Begum A; Oluyemisi OO; Khan SN; Ngadjui BT; Etoa XF; Choudhary MI
    Fitoterapia; 2011 Jun; 82(4):642-6. PubMed ID: 21316426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and bioactivity of diterpenoids from the roots of Salvia grandifolia.
    Kang J; Li L; Wang D; Wang H; Liu C; Li B; Yan Y; Fang L; Du G; Chen R
    Phytochemistry; 2015 Aug; 116():337-348. PubMed ID: 25912026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-glucosidase inhibitory activities.
    Hua J; Qi J; Yu BY
    Fitoterapia; 2014 Mar; 93():67-73. PubMed ID: 24321577
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica.
    Saruul E; Murata T; Selenge E; Sasaki K; Yoshizaki F; Batkhuu J
    Bioorg Med Chem Lett; 2015 Jun; 25(12):2555-8. PubMed ID: 25958242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro.
    Ademiluyi AO; Oboh G
    J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):17-25. PubMed ID: 22865445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.