These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24726372)

  • 61. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean.
    McCue P; Kwon YI; Shetty K
    Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Four new diastereoisomeric neolignan glycosides from the root bark of Lycium chinense Miller. and their α-glucosidase inhibitory activity.
    Duan YD; Su CY; Liang Y; Su YY; Zhu LL; Zhang W; Liu B
    Fitoterapia; 2023 Jul; 168():105520. PubMed ID: 37121406
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis and evaluation of benzophenone O-glycosides as α-glucosidase inhibitors.
    Liu Q; Guo T; Li W; Li D; Feng Z
    Arch Pharm (Weinheim); 2012 Oct; 345(10):771-83. PubMed ID: 22730155
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Diterpenes and phenylpropanoids from Clerodendrum splendens.
    Faiella L; Temraz A; Cotugno R; De Tommasi N; Braca A
    Planta Med; 2013 Sep; 79(14):1341-7. PubMed ID: 23929245
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rearranged abietane diterpenoids from Clerodendrum mandarinorum.
    Fan TP; Min ZD; Iinuma M; Tanaka T
    J Asian Nat Prod Res; 2000; 2(3):237-43. PubMed ID: 11256699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lignans from the root of Rhodiola crenulata.
    Yang YN; Liu ZZ; Feng ZM; Jiang JS; Zhang PC
    J Agric Food Chem; 2012 Feb; 60(4):964-72. PubMed ID: 22225005
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enzyme inhibitory assessment of the isolated constituents from Plantago holosteum Scop.
    Guragac Dereli FT; Genc Y; Saracoglu I; Kupeli Akkol E
    Z Naturforsch C J Biosci; 2020 Mar; 75(3-4):121-128. PubMed ID: 32267249
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two New Diterpenoids from Salvia przewarskii.
    Tsukada H; Kawabe H; Ohtaka A; Saito Y; Okamoto Y; Tori M; Kagechika H; Hirota H; Gong X; Kuroda C; Ohsaki A
    Nat Prod Commun; 2016 Feb; 11(2):159-61. PubMed ID: 27032190
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biologically Active Diterpenoids in the
    Kuźma Ł; Gomulski J
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232298
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge.
    Ma HY; Gao HY; Sun L; Huang J; Xu XM; Wu LJ
    J Nat Med; 2011 Jan; 65(1):37-42. PubMed ID: 20835851
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Xanthone glycoside constituents of Swertia kouitchensis with α-glucosidase inhibitory activity.
    Wan LS; Min QX; Wang YL; Yue YD; Chen JC
    J Nat Prod; 2013 Jul; 76(7):1248-53. PubMed ID: 23805995
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats.
    Shodehinde SA; Ademiluyi AO; Oboh G; Akindahunsi AA
    Life Sci; 2015 Jul; 133():8-14. PubMed ID: 25921768
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5.
    Arya H; Syed SB; Singh SS; Ampasala DR; Coumar MS
    Interdiscip Sci; 2018 Dec; 10(4):792-804. PubMed ID: 28623462
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans.
    Rungsimakan S; Rowan MG
    Phytochemistry; 2014 Dec; 108():177-88. PubMed ID: 25256822
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cyanogenic glycosides from the rare Australian endemic rainforest tree Clerodendrum grayi (Lamiaceae).
    Miller RE; McConville MJ; Woodrow IE
    Phytochemistry; 2006 Jan; 67(1):43-51. PubMed ID: 16307763
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new phenylethanoid glycoside from Incarvillea compacta.
    Wu HF; Zhu YD; Zhang LJ; Zou QY; Chen L; Shen T; Wang XF; Ma GX; Hu BR; Hu WC; Xu XD
    J Asian Nat Prod Res; 2016 Jun; 18(6):596-602. PubMed ID: 26630368
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Compounds from Platycladus orientalis and their inhibitory effects on nitric oxide and TNF-α production.
    Fan SY; Pei YH; Zeng HW; Zhang SD; Li YL; Li L; Ye J; Pan YX; Li HL; Zhang WD
    Planta Med; 2011 Sep; 77(14):1623-30. PubMed ID: 21412696
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hepatoprotective diterpenoids from the roots of Salvia grandifolia.
    Kang J; Zhang T; Li L; Sun H; Wang DD; Chen RY
    J Asian Nat Prod Res; 2016 May; 18(5):504-8. PubMed ID: 27086714
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Diterpenoids with diverse skeletons from the roots of Euphorbia micractina.
    Tian Y; Xu W; Zhu C; Lin S; Guo Y; Shi J
    J Nat Prod; 2013 Jun; 76(6):1039-46. PubMed ID: 23691978
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antioxidant diterpenoids from the roots of Salvia barrelieri.
    Kolak U; Kabouche A; Oztürk M; Kabouche Z; Topçu G; Ulubelen A
    Phytochem Anal; 2009; 20(4):320-7. PubMed ID: 19402189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.