BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24726633)

  • 1. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.
    Gopinathan N; Yang B; Lowe JP; Edler KJ; Rigby SP
    Int J Pharm; 2014 Jul; 469(1):146-58. PubMed ID: 24726633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore size distributions of biodegradable polymer microparticles in aqueous environments measured by NMR cryoporometry.
    Petrov O; Furó I; Schuleit M; Domanig R; Plunkett M; Daicic J
    Int J Pharm; 2006 Feb; 309(1-2):157-62. PubMed ID: 16386391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nimodipine loaded PLGA nanoparticles: formulation optimization using factorial design, characterization and in vitro evaluation.
    Mehta AK; Yadav KS; Sawant KK
    Curr Drug Deliv; 2007 Jul; 4(3):185-93. PubMed ID: 17627492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone.
    Meeus J; Chen X; Scurr DJ; Ciarnelli V; Amssoms K; Roberts CJ; Davies MC; van Den Mooter G
    J Pharm Sci; 2012 Sep; 101(9):3473-85. PubMed ID: 22447580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse PLA/PLGA nanoparticle fabrication through a surfactant-free route.
    Liang R; Zhu J
    J Control Release; 2011 Nov; 152 Suppl 1():e129-31. PubMed ID: 22195799
    [No Abstract]   [Full Text] [Related]  

  • 6. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery.
    Wang Y; Li P; Kong L
    AAPS PharmSciTech; 2013 Jun; 14(2):585-92. PubMed ID: 23463262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and optimization of NSAID loaded nanoparticles.
    Sashmal S; Mukherjee S; Ray S; Thakur RS; Ghosh LK; Gupta BK
    Pak J Pharm Sci; 2007 Apr; 20(2):157-62. PubMed ID: 17416573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.
    Hines DJ; Kaplan DL
    Crit Rev Ther Drug Carrier Syst; 2013; 30(3):257-76. PubMed ID: 23614648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte coated polymeric nanoparticles for controlled release of docetaxel.
    Agrawal R; Shanavas A; Yadav S; Aslam M; Bahadur D; Srivastava R
    J Biomed Nanotechnol; 2012 Feb; 8(1):19-28. PubMed ID: 22515091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the release characteristics of estradiol encapsulated in PLGA particles via surface coating.
    Enayati M; Stride E; Edirisinghe M; Bonfield W
    Ther Deliv; 2012 Feb; 3(2):209-26. PubMed ID: 22834198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(DL-lactide-co-glycolide) implants.
    Desai KG; Mallery SR; Schwendeman SP
    Eur J Pharm Biopharm; 2008 Sep; 70(1):187-98. PubMed ID: 18472254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process.
    Alcalá-Alcalá S; Urbán-Morlán Z; Aguilar-Rosas I; Quintanar-Guerrero D
    Int J Nanomedicine; 2013; 8():2141-51. PubMed ID: 23788833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS.
    Mu L; Feng SS
    J Control Release; 2003 Jan; 86(1):33-48. PubMed ID: 12490371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening of PLGA thin films utilizing hydrophobic fluorescent dyes for hydrophobic drug compounds.
    Steele TW; Huang CL; Kumar S; Widjaja E; Chiang Boey FY; Loo JS; Venkatraman SS
    J Pharm Sci; 2011 Oct; 100(10):4317-29. PubMed ID: 21607953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies.
    Li X; Xu Y; Chen G; Wei P; Ping Q
    Drug Dev Ind Pharm; 2008 Jan; 34(1):107-15. PubMed ID: 18214762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles.
    Klose D; Delplace C; Siepmann J
    Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboplatin-loaded PLGA microspheres for intracerebral injection: formulation and characterization.
    Chen W; Lu DR
    J Microencapsul; 1999; 16(5):551-63. PubMed ID: 10499836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doxorubicin release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran.
    Jeong YI; Choi KC; Song CE
    Arch Pharm Res; 2006 Aug; 29(8):712-9. PubMed ID: 16964768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.