These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24726769)

  • 1. GABA release provoked by disturbed Na(+), K(+) and Ca(2+) homeostasis in cerebellar nerve endings: roles of Ca(2+) channels, Na(+)/Ca(2+) exchangers and GAT1 transporter reversal.
    Romei C; Sabolla C; Raiteri L
    Neurochem Int; 2014 Jun; 72():1-9. PubMed ID: 24726769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal.
    Romei C; Di Prisco S; Raiteri M; Raiteri L
    J Neurochem; 2011 Oct; 119(1):50-63. PubMed ID: 21790607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA transporters mediate glycine release from cerebellum nerve endings: roles of Ca(2+)channels, mitochondrial Na(+)/Ca(2+) exchangers, vesicular GABA/glycine transporters and anion channels.
    Romei C; Raiteri M; Raiteri L
    Neurochem Int; 2012 Jul; 61(2):133-40. PubMed ID: 22579572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca(2+)-dependent anion channels.
    Milanese M; Romei C; Usai C; Oliveri M; Raiteri L
    J Neurosci Res; 2014 Mar; 92(3):398-408. PubMed ID: 24273061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic dysregulations typical of ischemia provoke release of glycine and GABA by multiple mechanisms.
    Luccini E; Romei C; Di Prisco S; Raiteri M; Raiteri L
    J Neurochem; 2010 Aug; 114(4):1074-84. PubMed ID: 20524963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity GABA uptake by neuronal GAT1 transporters provokes release of [(3)H]GABA by homoexchange and through GAT1-independent Ca(2+)-mediated mechanisms.
    Romei C; Sabolla C; Raiteri L
    Neuropharmacology; 2015 Jan; 88():164-70. PubMed ID: 25150942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of [(3)H]glycine release from mouse spinal cord synaptosomes selectively labeled through GLYT2 transporters.
    Luccini E; Raiteri L
    J Neurochem; 2007 Dec; 103(6):2439-48. PubMed ID: 17944872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycinergic nerve endings in hippocampus and spinal cord release glycine by different mechanisms in response to identical depolarizing stimuli.
    Luccini E; Romei C; Raiteri L
    J Neurochem; 2008 Jun; 105(6):2179-89. PubMed ID: 18298662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism.
    Rassner MP; Moser A; Follo M; Joseph K; van Velthoven-Wurster V; Feuerstein TJ
    J Neurochem; 2016 Apr; 137(2):177-89. PubMed ID: 26821584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of depolarizing agents on the Ca(2+)-independent and Ca(2+)-dependent release of [3H]GABA from sheep brain synaptosomes.
    Santos MS; Rodriguez R; Carvalho AP
    Biochem Pharmacol; 1992 Jul; 44(2):301-8. PubMed ID: 1642644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of exocytotic release of gamma-aminobutyric acid to Ca2+ entry through Ca2+ channels or by reversal of the Na+/Ca2+ exchanger in synaptosomes.
    Duarte CB; Ferreira IL; Carvalho AP; Carvalho CM
    Pflugers Arch; 1993 May; 423(3-4):314-23. PubMed ID: 8391683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. σ-1 Receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings.
    Lu CW; Lin TY; Wang CC; Wang SJ
    J Pharmacol Exp Ther; 2012 May; 341(2):532-42. PubMed ID: 22357973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple mechanisms of transmitter release evoked by "pathologically" elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium.
    Raiteri L; Stigliani S; Zedda L; Raiteri M; Bonanno G
    J Neurochem; 2002 Feb; 80(4):706-14. PubMed ID: 11841577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by 'pathologically' elevated extraterminal K+ concentrations.
    Raiteri L; Zappettini S; Milanese M; Fedele E; Raiteri M; Bonanno G
    J Neurochem; 2007 Nov; 103(3):952-61. PubMed ID: 17662048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.
    Sitges M; Galindo CA
    Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminopyridine-evoked release.
    Westphalen RI; Hemmings HC
    J Pharmacol Exp Ther; 2006 Jan; 316(1):216-23. PubMed ID: 16174800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Na(+)/Ca(2+)-exchange mediated Ca(2+)-entry and noradrenaline release in Na(+)-loaded peripheral sympathetic nerves.
    Török TL; Rácz D; Sáska Z; Dávid AZ; Tábi T; Zillikens S; Nada SA; Klebovich I; Gyires K; Magyar K
    Neurochem Int; 2008 Dec; 53(6-8):338-45. PubMed ID: 18831999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the participation of sodium channels on the rise in Na+ induced by 4-aminopyridine (4-AP) in synaptosomes.
    Galván E; Sitges M
    Neurochem Res; 2004 Feb; 29(2):347-55. PubMed ID: 15002730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.