These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24726922)

  • 21. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural decoding of spoken vowels from human sensory-motor cortex with high-density electrocorticography.
    Bouchard KE; Chang EF
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6782-5. PubMed ID: 25571553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex.
    Watanabe H; Sato MA; Suzuki T; Nambu A; Nishimura Y; Kawato M; Isa T
    J Neural Eng; 2012 Jun; 9(3):036006. PubMed ID: 22570195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural decoding using gyral and intrasulcal electrocorticograms.
    Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T
    Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding Native Cortical Representations for Flexion and Extension at Upper Limb Joints Using Electrocorticography.
    Thomas TM; Candrea DN; Fifer MS; McMullen DP; Anderson WS; Thakor NV; Crone NE
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):293-303. PubMed ID: 30624221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
    Carpaneto J; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S; Raos V
    Neuroscience; 2011 Aug; 188():80-94. PubMed ID: 21575688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of muscle activities from electrocorticograms in primary motor cortex of primates.
    Shin D; Watanabe H; Kambara H; Nambu A; Isa T; Nishimura Y; Koike Y
    PLoS One; 2012; 7(10):e47992. PubMed ID: 23110153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the phase code in an EEG during gripping-force tasks: a possible alternative approach to the development of the brain-computer interfaces.
    Logar V; Skrjanc I; Belic A; Brezan S; Koritnik B; Zidar J
    Artif Intell Med; 2008 Sep; 44(1):41-9. PubMed ID: 18657956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study.
    Tia B; Takemi M; Kosugi A; Castagnola E; Ansaldo A; Nakamura T; Ricci D; Ushiba J; Fadiga L; Iriki A
    J Physiol; 2017 Dec; 595(23):7203-7221. PubMed ID: 28791721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
    Flint RD; Tate MC; Li K; Templer JW; Rosenow JM; Pandarinath C; Slutzky MW
    eNeuro; 2020; 7(4):. PubMed ID: 32769159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex.
    Siero JC; Hermes D; Hoogduin H; Luijten PR; Ramsey NF; Petridou N
    Neuroimage; 2014 Nov; 101():177-84. PubMed ID: 25026157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regularized Partial Least Square Regression for Continuous Decoding in Brain-Computer Interfaces.
    Foodeh R; Ebadollahi S; Daliri MR
    Neuroinformatics; 2020 Jun; 18(3):465-477. PubMed ID: 32107734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Logistic-weighted regression improves decoding of finger flexion from electrocorticographic signals.
    Chen W; Liu X; Litt B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2629-32. PubMed ID: 25570530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Give me a sign: decoding four complex hand gestures based on high-density ECoG.
    Bleichner MG; Freudenburg ZV; Jansma JM; Aarnoutse EJ; Vansteensel MJ; Ramsey NF
    Brain Struct Funct; 2016 Jan; 221(1):203-16. PubMed ID: 25273279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of hand posture from electrocorticographic signals recorded during varying force conditions.
    Degenhart AD; Collinger JL; Vinjamuri R; Kelly JW; Tyler-Kabara EC; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5782-5. PubMed ID: 22255654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex.
    Kanth ST; Ray S
    J Neurosci; 2020 Mar; 40(12):2430-2444. PubMed ID: 32066581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.