These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24727079)

  • 1. Development of food intake controls: neuroendocrine and environmental regulation of food intake during early life.
    Crespi EJ; Unkefer MK
    Horm Behav; 2014 Jun; 66(1):74-85. PubMed ID: 24727079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental programming of hypothalamic feeding circuits.
    Bouret SG; Simerly RB
    Clin Genet; 2006 Oct; 70(4):295-301. PubMed ID: 16965320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perinatal nutrition and hormone-dependent programming of food intake.
    Plagemann A
    Horm Res; 2006; 65 Suppl 3():83-9. PubMed ID: 16612119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Appetite regulation: neuroendocrine basis and clinical approaches].
    Palma JA; Iriarte J
    Med Clin (Barc); 2012 Jun; 139(2):70-5. PubMed ID: 22257602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurobiology of feeding and energy expenditure.
    Gao Q; Horvath TL
    Annu Rev Neurosci; 2007; 30():367-98. PubMed ID: 17506645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis.
    Crespi EJ; Vaudry H; Denver RJ
    J Neuroendocrinol; 2004 Mar; 16(3):279-88. PubMed ID: 15049859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture.
    Volkoff H; Hoskins LJ; Tuziak SM
    Gen Comp Endocrinol; 2010 Jul; 167(3):352-9. PubMed ID: 19735660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals.
    Zheng H; Lenard NR; Shin AC; Berthoud HR
    Int J Obes (Lond); 2009 Jun; 33 Suppl 2(Suppl 2):S8-13. PubMed ID: 19528982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma and hypothalamic peptide-hormone levels regulating somatotroph function and energy balance in fed and fasted states: a comparative study in four strains of rats.
    Kappeler L; Zizzari P; Grouselle D; Epelbaum J; Bluet-Pajot MT
    J Neuroendocrinol; 2004 Dec; 16(12):980-8. PubMed ID: 15667453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in food intake and its relationship to weight loss during advanced age.
    McDonald RB; Ruhe RC
    Interdiscip Top Gerontol; 2010; 37():51-63. PubMed ID: 20703055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temporal organization of ingestive behaviour and its interaction with regulation of energy balance.
    Strubbe JH; van Dijk G
    Neurosci Biobehav Rev; 2002 Jun; 26(4):485-98. PubMed ID: 12204194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral and central mechanisms regulating food intake and macronutrient selection.
    York DA
    Obes Surg; 1999 Oct; 9(5):471-9. PubMed ID: 10605906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hypothalamic AMP-kinase in food intake regulation.
    Minokoshi Y; Shiuchi T; Lee S; Suzuki A; Okamoto S
    Nutrition; 2008 Sep; 24(9):786-90. PubMed ID: 18725075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothalamic control of seasonal changes in food intake and body weight.
    Ebling FJ
    Front Neuroendocrinol; 2015 Apr; 37():97-107. PubMed ID: 25449796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between the "cognitive" and "metabolic" brain in the control of food intake.
    Berthoud HR
    Physiol Behav; 2007 Aug; 91(5):486-98. PubMed ID: 17307205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is dopamine a physiologically relevant mediator of feeding behavior?
    Palmiter RD
    Trends Neurosci; 2007 Aug; 30(8):375-81. PubMed ID: 17604133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thrifty phenotype as an adaptive maternal effect.
    Wells JC
    Biol Rev Camb Philos Soc; 2007 Feb; 82(1):143-72. PubMed ID: 17313527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How palatable food disrupts appetite regulation.
    Erlanson-Albertsson C
    Basic Clin Pharmacol Toxicol; 2005 Aug; 97(2):61-73. PubMed ID: 15998351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of the anorexia of aging in the Brown Norway rat.
    Wolden-Hanson T
    Physiol Behav; 2006 Jun; 88(3):267-76. PubMed ID: 16781740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanin-concentrating hormone (MCH) and gonadotropin-releasing hormones (GnRH) in Atlantic cod, Gadus morhua: tissue distributions, early ontogeny and effects of fasting.
    Tuziak SM; Volkoff H
    Peptides; 2013 Dec; 50():109-18. PubMed ID: 24140403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.