These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 24727193)
41. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Siegfried BD; Rangasamy M; Wang H; Spencer T; Haridas CV; Tenhumberg B; Sumerford DV; Storer NP Pest Manag Sci; 2014 May; 70(5):725-33. PubMed ID: 24124030 [TBL] [Abstract][Full Text] [Related]
42. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC Pinto CPG; Azevedo EB; Dos Santos ALZ; Cardoso CP; Fernandes FO; Rossi GD; Polanczyk RA J Invertebr Pathol; 2019 Sep; 166():107209. PubMed ID: 31201787 [TBL] [Abstract][Full Text] [Related]
43. Host-plant effects the expression of resistance to Bacillus thuringiensis kurstaki in Trichoplusia ni (Hubner): an important factor in resistance evolution. Janmaat AF; Myers JH J Evol Biol; 2007 Jan; 20(1):62-9. PubMed ID: 17210000 [TBL] [Abstract][Full Text] [Related]
44. Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. Gomis-Cebolla J; Wang Y; Quan Y; He K; Walsh T; James B; Downes S; Kain W; Wang P; Leonard K; Morgan T; Oppert B; Ferré J J Invertebr Pathol; 2018 Jun; 155():64-70. PubMed ID: 29777666 [TBL] [Abstract][Full Text] [Related]
45. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Orozco-Flores AA; Valadez-Lira JA; Oppert B; Gomez-Flores R; Tamez-Guerra R; Rodríguez-Padilla C; Tamez-Guerra P J Insect Physiol; 2017 Apr; 98():275-283. PubMed ID: 28167070 [TBL] [Abstract][Full Text] [Related]
46. Inheritance of resistance to Bacillus thuringiensis subsp. kurstaki in Trichoplusia ni. Janmaat AF; Wang P; Kain W; Zhao JZ; Myers J Appl Environ Microbiol; 2004 Oct; 70(10):5859-67. PubMed ID: 15466525 [TBL] [Abstract][Full Text] [Related]
47. Experimental evolution of resistance against Bacillus thuringiensis in the insect model host Galleria mellonella results in epigenetic modifications. Mukherjee K; Grizanova E; Chertkova E; Lehmann R; Dubovskiy I; Vilcinskas A Virulence; 2017 Nov; 8(8):1618-1630. PubMed ID: 28521626 [TBL] [Abstract][Full Text] [Related]
48. Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: studies on the propagation "in vitro". Rodríguez AP; Martínez MG; Barrera-Cortés J; Ibarra JE; Bustos FM Bioprocess Biosyst Eng; 2015 Feb; 38(2):329-39. PubMed ID: 25168123 [TBL] [Abstract][Full Text] [Related]
49. Lethal and sublethal effects of single and double applications of Bacillus thuringiensis variety kurstaki on spruce budworm (Lepidoptera: Tortricidae) larvae. Moreau G; Bauce E J Econ Entomol; 2003 Apr; 96(2):280-6. PubMed ID: 14994791 [TBL] [Abstract][Full Text] [Related]
50. Species diagnosis and Bacillus thuringiensis resistance monitoring of Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) field strains from the southern United States using feeding disruption bioassays. Bailey WD; Brownie C; Bacheler JS; Gould F; Kennedy GG; Sorenson CE; Roe RM J Econ Entomol; 2001 Feb; 94(1):76-85. PubMed ID: 11233137 [TBL] [Abstract][Full Text] [Related]
51. Variation in the susceptibility of the forest tent caterpillar (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis variety kurstaki HD-1: effect of the host plant. Kouassi KC; Lorenzetti F; Guertin C; Cabana J; Mauffette Y J Econ Entomol; 2001 Oct; 94(5):1135-41. PubMed ID: 11681676 [TBL] [Abstract][Full Text] [Related]
53. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis). Martinez JC; Caprio MA; Friedenberg NA J Econ Entomol; 2018 Feb; 111(1):382-390. PubMed ID: 29281043 [TBL] [Abstract][Full Text] [Related]
54. Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. Gibson DM; Gallo LG; Krasnoff SB; Ketchum RE J Econ Entomol; 1995 Apr; 88(2):270-7. PubMed ID: 7722082 [TBL] [Abstract][Full Text] [Related]
55. Labeling membrane receptors with lectins and evaluation of the midgut histochemistry of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) populations with different levels of susceptibility to formulated Bt. Oliveira AC; Wanderley-Teixeira V; Silva CT; Teixeira ÁA; Siqueira HA; Cruz GS; Neto CJCL; Lima AL; Correia MT Pest Manag Sci; 2018 Nov; 74(11):2608-2617. PubMed ID: 29700928 [TBL] [Abstract][Full Text] [Related]
56. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. Polenogova OV; Noskov YA; Yaroslavtseva ON; Kryukova NA; Alikina T; Klementeva TN; Andrejeva J; Khodyrev VP; Kabilov MR; Kryukov VY; Glupov VV PLoS One; 2021; 16(3):e0248704. PubMed ID: 33760838 [TBL] [Abstract][Full Text] [Related]
57. Responses of 9 lepidopteran species to Bacillus thuringiensis: How useful is phylogenetic relatedness for selecting surrogate species for nontarget arthropod risk assessment? Burgess EP; Barraclough EI; Kean AM; Markwick NP; Malone LA Insect Sci; 2015 Dec; 22(6):803-12. PubMed ID: 25111652 [TBL] [Abstract][Full Text] [Related]
58. Nutrition as a neglected factor in insect herbivore susceptibility to Bt toxins. Deans CA; Sword GA; Behmer ST Curr Opin Insect Sci; 2016 Jun; 15():97-103. PubMed ID: 27436738 [TBL] [Abstract][Full Text] [Related]