These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24727193)

  • 61. The Change in the Entomopathogenic Properties in Streptomycin Resistant Bacillus thuringiensis.
    Polenogova OV; Glupov VV
    Dokl Biol Sci; 2018 Nov; 483(1):243-245. PubMed ID: 30603948
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Use of by-products rich in carbon and nitrogen as a nutrient source to produce Bacillus thuringiensis (Berliner)-based biopesticide.
    Valicente FH; Mourão AH
    Neotrop Entomol; 2008; 37(6):702-8. PubMed ID: 19169559
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Laboratory and field evaluations of two Bacillus thuringiensis formulations, Novodor and Raven, for control of cottonwood leaf beetle (Coleoptera: Chrysomelidae).
    Coyle DR; McMillin JD; Krause SC; Hart ER
    J Econ Entomol; 2000 Jun; 93(3):713-20. PubMed ID: 10902320
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides.
    Bernstein IL; Bernstein JA; Miller M; Tierzieva S; Bernstein DI; Lummus Z; Selgrade MK; Doerfler DL; Seligy VL
    Environ Health Perspect; 1999 Jul; 107(7):575-82. PubMed ID: 10379004
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bacillus thuringiensis: fermentation process and risk assessment. A short review.
    Capalbo DM
    Mem Inst Oswaldo Cruz; 1995; 90(1):135-8. PubMed ID: 8524077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Assessment of the impacts of microbial plant protection products containing Bacillus thuringiensis on the survival of adults and larvae of the honeybee (Apis mellifera).
    Steinigeweg C; Alkassab AT; Beims H; Eckert JH; Richter D; Pistorius J
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29773-29780. PubMed ID: 33566293
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt.
    Azizoglu U
    Curr Microbiol; 2019 Nov; 76(11):1379-1385. PubMed ID: 31101973
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations.
    Brar SK; Verma M; Tyagi RD; Valéro JR; Surampalli RY
    J Econ Entomol; 2006 Aug; 99(4):1065-79. PubMed ID: 16937657
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Learning from past experience.
    Freudling C
    Nat Biotechnol; 1998 Nov; 16(11):988. PubMed ID: 9831013
    [No Abstract]   [Full Text] [Related]  

  • 70. Moderation of pathogen-induced mortality: the role of density in Bacillus thuringiensis virulence.
    Raymond B; Ellis RJ; Bonsall MB
    Biol Lett; 2009 Apr; 5(2):218-20. PubMed ID: 19033132
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phenotypic plasticity in adults of Anticarsia gemmatalis exposed to sub-doses of Bt-based bioinsecticide.
    Fernandes FO; Souza TD; Sanches AC; Carvalho IR; Dias NP; Desiderio JA; Polanczyk RA
    Braz J Biol; 2022; 84():e256933. PubMed ID: 35293546
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Does
    Celi M; Russo D; Vazzana M; Arizza V; Manachini B
    Insects; 2022 May; 13(5):. PubMed ID: 35621773
    [No Abstract]   [Full Text] [Related]  

  • 73. More wrinkles to Bt susceptibility.
    Broderick NA
    Virulence; 2016 Nov; 7(8):853-855. PubMed ID: 27715450
    [No Abstract]   [Full Text] [Related]  

  • 74. Compound interactions effects of plant antioxidants in combination with carbaryl on performance ofTrichoplusia ni (Cabbage Looper).
    Gonzalez-Coloma A; Wisdom CS; Rundel PW
    J Chem Ecol; 1990 Mar; 16(3):887-99. PubMed ID: 24263603
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interactions Between Two Invertebrate Pathogens: An Endophytic Fungus and an Externally Applied Bacterium.
    Wakil W; Tahir M; Al-Sadi AM; Shapiro-Ilan D
    Front Microbiol; 2020; 11():522368. PubMed ID: 33329412
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improved insect resistance against Spodoptera litura in transgenic sweetpotato by overexpressing Cry1Aa toxin.
    Zhong Y; Ahmed S; Deng G; Fan W; Zhang P; Wang H
    Plant Cell Rep; 2019 Nov; 38(11):1439-1448. PubMed ID: 31451933
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Responses of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) to two Bt corn hybrids expressing Cry1Ab.
    Yinghua S; Yan D; Jin C; Jiaxi W; Jianwu W
    Sci Rep; 2017 Feb; 7():41577. PubMed ID: 28186125
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis.
    Dubovskiy IM; Grizanova EV; Whitten MM; Mukherjee K; Greig C; Alikina T; Kabilov M; Vilcinskas A; Glupov VV; Butt TM
    Virulence; 2016 Nov; 7(8):860-870. PubMed ID: 27029421
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of pathogen exposure on life-history variation in the gypsy moth (Lymantria dispar).
    Páez DJ; Fleming-Davies AE; Dwyer G
    J Evol Biol; 2015 Oct; 28(10):1828-39. PubMed ID: 26201381
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dietary mechanism behind the costs associated with resistance to Bacillus thuringiensis in the cabbage looper, Trichoplusia ni.
    Shikano I; Cory JS
    PLoS One; 2014; 9(8):e105864. PubMed ID: 25171126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.