BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24727346)

  • 1. β2- and β3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines.
    Hartung JE; Ciszek BP; Nackley AG
    Pain; 2014 Jul; 155(7):1346-1355. PubMed ID: 24727346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained stimulation of β
    Zhang X; Hartung JE; Bortsov AV; Kim S; O'Buckley SC; Kozlowski J; Nackley AG
    Brain Behav Immun; 2018 Oct; 73():520-532. PubMed ID: 29935309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors.
    Ciszek BP; O'Buckley SC; Nackley AG
    Anesthesiology; 2016 May; 124(5):1122-35. PubMed ID: 26950706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both beta2- and beta3-adrenergic receptors.
    Nackley AG; Tan KS; Fecho K; Flood P; Diatchenko L; Maixner W
    Pain; 2007 Apr; 128(3):199-208. PubMed ID: 17084978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.
    Chen Y; Boettger MK; Reif A; Schmitt A; Uçeyler N; Sommer C
    Mol Pain; 2010 Mar; 6():13. PubMed ID: 20193086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nitric oxide synthase inhibitors on the ACTH and cytokine responses to peripheral immune signals.
    Kim CK; Rivier C
    J Neuroendocrinol; 1998 May; 10(5):353-62. PubMed ID: 9663649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.
    Kline RH; Exposto FG; O'Buckley SC; Westlund KN; Nackley AG
    Neuroscience; 2015 Apr; 290():561-9. PubMed ID: 25659347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity.
    Gálvez I; Martín-Cordero L; Hinchado MD; Álvarez-Barrientos A; Ortega E
    Brain Behav Immun; 2019 Aug; 80():564-572. PubMed ID: 31055173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic β2-receptor mediates itch hypersensitivity following heterotypic chronic stress in rats.
    Peng XY; Huang Y; Wang XL; Cao LF; Chen LH; Luo WF; Liu T
    Neuroreport; 2015 Dec; 26(17):1003-10. PubMed ID: 26426856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.
    Ha SK; Lee JA; Cho EJ; Choi I
    J Food Sci; 2017 Feb; 82(2):545-552. PubMed ID: 28071803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome.
    Li W; Shi X; Wang L; Guo T; Wei T; Cheng K; Rice KC; Kingery WS; Clark JD
    Pain; 2013 Aug; 154(8):1224-36. PubMed ID: 23718987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The renin-angiotensin system and its vasoactive metabolite angiotensin-(1-7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines.
    Pawlik MW; Kwiecien S; Ptak-Belowska A; Pajdo R; Olszanecki R; Suski M; Madej J; Targosz A; Konturek SJ; Korbut R; Brzozowski T
    J Physiol Pharmacol; 2016 Feb; 67(1):75-91. PubMed ID: 27010897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord.
    Kawasaki Y; Zhang L; Cheng JK; Ji RR
    J Neurosci; 2008 May; 28(20):5189-94. PubMed ID: 18480275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of beta2-adrenoceptors (beta-AR), but not beta1-, beta3-AR and endothelial nitric oxide, in beta-AR-mediated relaxation of rat intrapulmonary artery.
    Pourageaud F; Leblais V; Bellance N; Marthan R; Muller B
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jul; 372(1):14-23. PubMed ID: 16133491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling.
    Prabhu SD; Chandrasekar B; Murray DR; Freeman GL
    Circulation; 2000 May; 101(17):2103-9. PubMed ID: 10790354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci.
    LeGrand A; Fermor B; Fink C; Pisetsky DS; Weinberg JB; Vail TP; Guilak F
    Arthritis Rheum; 2001 Sep; 44(9):2078-83. PubMed ID: 11592370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors.
    Su TF; Zhao YQ; Zhang LH; Peng M; Wu CH; Pei L; Tian B; Zhang J; Shi J; Pan HL; Li M
    Eur J Pain; 2012 May; 16(5):624-35. PubMed ID: 22337285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nebivolol ameliorates asymmetric dimethylarginine-induced vascular response in rat aorta via β3 adrenoceptor-mediated mechanism.
    Wang Y; Dong X
    Clin Exp Hypertens; 2016; 38(2):252-9. PubMed ID: 26825432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A β1/2 adrenergic receptor-sensitive intracellular signaling pathway modulates CCL2 production in cultured spinal astrocytes.
    Morioka N; Abe H; Araki R; Matsumoto N; Zhang FF; Nakamura Y; Hisaoka-Nakashima K; Nakata Y
    J Cell Physiol; 2014 Mar; 229(3):323-32. PubMed ID: 24037783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.
    Vaniotis G; Glazkova I; Merlen C; Smith C; Villeneuve LR; Chatenet D; Therien M; Fournier A; Tadevosyan A; Trieu P; Nattel S; Hébert TE; Allen BG
    J Mol Cell Cardiol; 2013 Sep; 62():58-68. PubMed ID: 23684854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.