These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24727353)
1. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Parshetti GK; Chowdhury S; Balasubramanian R Bioresour Technol; 2014 Jun; 161():310-9. PubMed ID: 24727353 [TBL] [Abstract][Full Text] [Related]
2. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization. Ghaedi M; Shojaeipour E; Ghaedi AM; Sahraei R Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():135-49. PubMed ID: 25699703 [TBL] [Abstract][Full Text] [Related]
3. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. Gupta VK; Ali I; Saini VK J Colloid Interface Sci; 2007 Nov; 315(1):87-93. PubMed ID: 17689548 [TBL] [Abstract][Full Text] [Related]
4. Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells. Zhang JX; Ou LL Water Sci Technol; 2013; 67(4):737-44. PubMed ID: 23306250 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of anionic dyes from aqueous solution on fly ash. Sun D; Zhang X; Wu Y; Liu X J Hazard Mater; 2010 Sep; 181(1-3):335-42. PubMed ID: 20570045 [TBL] [Abstract][Full Text] [Related]
6. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Malik PK J Hazard Mater; 2004 Sep; 113(1-3):81-8. PubMed ID: 15363517 [TBL] [Abstract][Full Text] [Related]
7. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864 [TBL] [Abstract][Full Text] [Related]
8. ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption. Ghaedi M; Ansari A; Sahraei R Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():687-94. PubMed ID: 23831942 [TBL] [Abstract][Full Text] [Related]
9. Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. Sukriti ; Sharma J; Chadha AS; Pruthi V; Anand P; Bhatia J; Kaith BS J Environ Manage; 2017 Apr; 190():176-187. PubMed ID: 28049087 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: equilibrium and kinetic studies. Nethaji S; Sivasamy A Chemosphere; 2011 Mar; 82(10):1367-72. PubMed ID: 21176940 [TBL] [Abstract][Full Text] [Related]
11. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Fernandez ME; Ledesma B; Román S; Bonelli PR; Cukierman AL Bioresour Technol; 2015 May; 183():221-8. PubMed ID: 25742754 [TBL] [Abstract][Full Text] [Related]
12. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO Tuzen M; Sarı A; Saleh TA J Environ Manage; 2018 Jan; 206():170-177. PubMed ID: 29065358 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. Rodríguez A; García J; Ovejero G; Mestanza M J Hazard Mater; 2009 Dec; 172(2-3):1311-20. PubMed ID: 19726130 [TBL] [Abstract][Full Text] [Related]
14. Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Qian WC; Luo XP; Wang X; Guo M; Li B Ecotoxicol Environ Saf; 2018 Aug; 157():300-306. PubMed ID: 29627414 [TBL] [Abstract][Full Text] [Related]
15. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Selvam PP; Preethi S; Basakaralingam P; Thinakaran N; Sivasamy A; Sivanesan S J Hazard Mater; 2008 Jun; 155(1-2):39-44. PubMed ID: 18162299 [TBL] [Abstract][Full Text] [Related]
16. Dye adsorption on unburned carbon: kinetics and equilibrium. Wang S; Li H J Hazard Mater; 2005 Nov; 126(1-3):71-7. PubMed ID: 16081211 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. Jalil AA; Triwahyono S; Adam SH; Rahim ND; Aziz MA; Hairom NH; Razali NA; Abidin MA; Mohamadiah MK J Hazard Mater; 2010 Sep; 181(1-3):755-62. PubMed ID: 20538408 [TBL] [Abstract][Full Text] [Related]
18. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. Khaled A; El Nemr A; El-Sikaily A; Abdelwahab O J Hazard Mater; 2009 Jun; 165(1-3):100-10. PubMed ID: 19013711 [TBL] [Abstract][Full Text] [Related]
19. Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe Ashrafi M; Arab Chamjangali M; Bagherian G; Goudarzi N Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():268-279. PubMed ID: 27541799 [TBL] [Abstract][Full Text] [Related]
20. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk. Ghaedi M; Ghaedi AM; Ansari A; Mohammadi F; Vafaei A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():639-54. PubMed ID: 24892545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]