These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24727398)

  • 21. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.
    Weschler MK; Barr WJ; Harper WF; Landis AE
    Bioresour Technol; 2014 Feb; 153():108-15. PubMed ID: 24355501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.
    Zhang J; Jia C; Wu Y; Xia X; Xi B; Wang L; Zhai Y
    PLoS One; 2017; 12(7):e0180685. PubMed ID: 28672044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland.
    Pishgar-Komleh SH; Zylowski T; Rozakis S; Kozyra J
    J Environ Manage; 2020 Apr; 260():110138. PubMed ID: 32090835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle water footprints of nonfood biomass fuels in China.
    Zhang T; Xie X; Huang Z
    Environ Sci Technol; 2014 Apr; 48(7):4137-44. PubMed ID: 24400620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.
    Wang L; Templer R; Murphy RJ
    Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering algae for biohydrogen and biofuel production.
    Beer LL; Boyd ES; Peters JW; Posewitz MC
    Curr Opin Biotechnol; 2009 Jun; 20(3):264-71. PubMed ID: 19560336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofuel development, food security and the use of marginal land in China.
    Qiu H; Huang J; Keyzer M; van Veen W; Rozelle S; Fisher G; Ermolieva T
    J Environ Qual; 2011; 40(4):1058-67. PubMed ID: 21712574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept.
    Luo G; Talebnia F; Karakashev D; Xie L; Zhou Q; Angelidaki I
    Bioresour Technol; 2011 Jan; 102(2):1433-9. PubMed ID: 20933399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth.
    Guragain YN; De Coninck J; Husson F; Durand A; Rakshit SK
    Bioresour Technol; 2011 Mar; 102(6):4416-24. PubMed ID: 21273061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide.
    Tan L; Tang YQ; Nishimura H; Takei S; Morimura S; Kida K
    Prep Biochem Biotechnol; 2013; 43(7):682-95. PubMed ID: 23768113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofuels and the conundrum of sustainability.
    Sheehan JJ
    Curr Opin Biotechnol; 2009 Jun; 20(3):318-24. PubMed ID: 19553101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exergy-based efficiency and renewability assessment of biofuel production.
    Dewulf J; Van Langenhove H; Van De Velde B
    Environ Sci Technol; 2005 May; 39(10):3878-82. PubMed ID: 15952399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.
    Chowdhury R; Viamajala S; Gerlach R
    Bioresour Technol; 2012 Mar; 108():102-11. PubMed ID: 22264431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofuels in China.
    Tan T; Yu J; Lu J; Zhang T
    Adv Biochem Eng Biotechnol; 2010; 122():73-104. PubMed ID: 20582528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
    Spatari S; MacLean HL
    Environ Sci Technol; 2010 Nov; 44(22):8773-80. PubMed ID: 20979408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.
    Jiang D; Hao M; Fu J; Tian G; Ding F
    Int J Biometeorol; 2019 May; 63(5):701-710. PubMed ID: 28913618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofuels and biodiversity: principles for creating better policies for biofuel production.
    Groom MJ; Gray EM; Townsend PA
    Conserv Biol; 2008 Jun; 22(3):602-9. PubMed ID: 18261147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.