These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24727702)

  • 1. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams.
    Hu S; Li Y
    Bioresour Technol; 2014 Jun; 161():410-5. PubMed ID: 24727702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.
    Hu S; Luo X; Li Y
    ChemSusChem; 2014 Jan; 7(1):66-72. PubMed ID: 24357542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw.
    Hu S; Wan C; Li Y
    Bioresour Technol; 2012 Jan; 103(1):227-33. PubMed ID: 22047656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorisation of crude glycerol in the production of liquefied lignin bio-polyols for polyurethane formulations.
    Hernández-Ramos F; Alriols MG; Antxustegi MM; Labidi J; Erdocia X
    Int J Biol Macromol; 2023 Aug; 247():125855. PubMed ID: 37460069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and properties of polyurethane foams prepared from heavy oil modified by polyols with 4,4'-methylene-diphenylene isocyanate (MDI).
    Zou X; Qin T; Wang Y; Huang L; Han Y; Li Y
    Bioresour Technol; 2012 Jun; 114():654-7. PubMed ID: 22497705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams.
    Luo X; Hu S; Zhang X; Li Y
    Bioresour Technol; 2013 Jul; 139():323-9. PubMed ID: 23665694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.
    Dang Y; Luo X; Wang F; Li Y
    Waste Manag; 2016 Jun; 52():360-6. PubMed ID: 27055365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.
    Uprety BK; Reddy JV; Dalli SS; Rakshit SK
    Bioresour Technol; 2017 Jul; 235():309-315. PubMed ID: 28371769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquefaction of lignin by polyethyleneglycol and glycerol.
    Jin Y; Ruan X; Cheng X; Lü Q
    Bioresour Technol; 2011 Feb; 102(3):3581-3. PubMed ID: 21050748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil.
    Kim HJ; Jin X; Choi JW
    Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG.
    Yu F; Le Z; Chen P; Liu Y; Lin X; Ruan R
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):235-43. PubMed ID: 18418755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The universality of lignocellulosic biomass liquefaction by plasma electrolysis under acidic conditions.
    Xi D; Jiang C; Zhou R; Fang Z; Zhang X; Liu Y; Luan B; Feng Z; Chen G; Chen Z; Liu Q; Yang SZ
    Bioresour Technol; 2018 Nov; 268():531-538. PubMed ID: 30121026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane.
    Tran MH; Yu JH; Lee EY
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening.
    van Rossum G; Zhao W; Castellvi Barnes M; Lange JP; Kersten SR
    ChemSusChem; 2014 Jan; 7(1):253-9. PubMed ID: 24265195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust.
    Gosz K; Tercjak A; Olszewski A; Haponiuk J; Piszczyk Ł
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulose Biomass Liquefaction: Process and Applications Development as Polyurethane Foams.
    Bontaş MG; Diacon A; Călinescu I; Rusen E
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.
    Carriço CS; Fraga T; Carvalho VE; Pasa VMD
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28671592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil.
    Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.