These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24727702)

  • 41. Marsilea spp.-A novel source of lignocellulosic biomass: Effect of solubilized lignin on anaerobic biodegradability and cost of energy products.
    Rajesh Banu J; Sugitha S; Kannah RY; Kavitha S; Yeom IT
    Bioresour Technol; 2018 May; 255():220-228. PubMed ID: 29427873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M; Xu CC
    Bioresour Technol; 2010 Apr; 101(7):2483-90. PubMed ID: 20031393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams.
    Polaczek K; Kurańska M
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation.
    Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lignin-Based Polyurethane: Recent Advances and Future Perspectives.
    Ma X; Chen J; Zhu J; Yan N
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000492. PubMed ID: 33205584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.
    Mahmood N; Yuan Z; Schmidt J; Charles Xu C
    Bioresour Technol; 2013 Jul; 139():13-20. PubMed ID: 23644065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents.
    Mahmood N; Yuan Z; Schmidt J; Xu CC
    Bioresour Technol; 2015 Aug; 190():416-9. PubMed ID: 25936442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-liquefaction of swine manure and crude glycerol to bio-oil: model compound studies and reaction pathways.
    Ye Z; Xiu S; Shahbazi A; Zhu S
    Bioresour Technol; 2012 Jan; 104():783-7. PubMed ID: 22119429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry.
    Peyrton J; Chambaretaud C; Avérous L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustainable treatment of sewage sludge via plasma-electrolytic liquefaction for bio-friendly production of polyurethane foam.
    Xi D; Xie W; Qi F; Huang Z; Wen S; Fan B; Yin P; Zhang X; Fang Z; Ye L; Yang S
    J Environ Manage; 2023 Mar; 329():117072. PubMed ID: 36584516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid and solvent-saving liquefaction of woody biomass using microwave-ultrasonic assisted technology.
    Lu Z; Wu Z; Fan L; Zhang H; Liao Y; Zheng D; Wang S
    Bioresour Technol; 2016 Jan; 199():423-426. PubMed ID: 26419964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomass-based polyols through oxypropylation reaction.
    Aniceto JP; Portugal I; Silva CM
    ChemSusChem; 2012 Aug; 5(8):1358-68. PubMed ID: 22807440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic and product composition study on the cellulose liquefaction in polyhydric alcohols.
    Shi Y; Li J; Wang J; Zhao T; Yang H; Jiang J; Jiang X
    Bioresour Technol; 2016 Aug; 214():419-425. PubMed ID: 27155797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
    de Haro JC; López-Pedrajas D; Pérez Á; Rodríguez JF; Carmona M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3174-3183. PubMed ID: 28822032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The modification of polyurethane foams using new boroorganic polyols (II) polyurethane foams from boron-modified hydroxypropyl urea derivatives.
    Zarzyka I
    ScientificWorldJournal; 2014; 2014():363260. PubMed ID: 24587721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.