These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24727702)

  • 61. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis.
    Petrović ZS; Zhang W; Javni I
    Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polyurethane foams from vegetable oil-based polyols: a review.
    Kaikade DS; Sabnis AS
    Polym Bull (Berl); 2023; 80(3):2239-2261. PubMed ID: 35310173
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis and characterization of polyurethanes made from copolymers of epoxidized natural oil and tetrahydrofuran.
    Hoong SS; Yeong SK; Hassan HA; Din AK; Choo YM
    J Oleo Sci; 2015; 64(1):101-15. PubMed ID: 25492233
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.
    Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ
    Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polyurethanes Based on Unmodified and Refined Technical Lignins: Correlation between Molecular Structure and Material Properties.
    Wang YY; Scheidemantle B; Wyman CE; Cai CM; Ragauskas AJ
    Biomacromolecules; 2021 May; 22(5):2129-2136. PubMed ID: 33900737
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Open-Cell Rigid Polyurethane Foams from Peanut Shell-Derived Polyols Prepared under Different Post-Processing Conditions.
    Zhang G; Wu Y; Chen W; Han D; Lin X; Xu G; Zhang Q
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450807
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans.
    Pflügl S; Marx H; Mattanovich D; Sauer M
    Bioresour Technol; 2014; 152():499-504. PubMed ID: 24333679
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Degradation and Repolymerization Analysis on Solvolysis Liquefaction of Corn Stalk.
    Chen W; Zhang Q; Lin X; Jiang K; Han D
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33066199
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction.
    van der Zwan T; Hu J; Saddler JN
    Biotechnol Bioeng; 2017 Nov; 114(11):2489-2496. PubMed ID: 28691220
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [FTIR analysis of products derived from wood liquefaction with 1-octanol].
    Zou XW; Yang Z; Qin TF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1545-8. PubMed ID: 19810527
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents.
    Shi Y; Xia X; Li J; Wang J; Zhao T; Yang H; Jiang J; Jiang X
    Bioresour Technol; 2016 Dec; 221():102-110. PubMed ID: 27639670
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism and optimization for plasma electrolytic liquefaction of sawdust.
    Xi D; Zhou R; Zhou R; Zhang X; Ye L; Li J; Jiang C; Chen Q; Sun G; Liu Q; Yang S
    Bioresour Technol; 2017 Oct; 241():545-551. PubMed ID: 28601772
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.
    Lemée L; Pinard L; Beauchet R; Kpogbemabou D
    Bioresour Technol; 2013 Dec; 149():465-9. PubMed ID: 24140851
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Liquefaction of Lignocellulose in Fluid Catalytic Cracker Feed: A Process Concept Study.
    Kumar S; Lange JP; Van Rossum G; Kersten SR
    ChemSusChem; 2015 Dec; 8(23):4086-94. PubMed ID: 26578449
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw.
    Sun F; Chen H
    Bioresour Technol; 2008 Sep; 99(13):5474-9. PubMed ID: 18077155
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process.
    Miao C; Chakraborty M; Chen S
    Bioresour Technol; 2012 Apr; 110():617-27. PubMed ID: 22330592
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maximizing the liquid fuel yield in a biorefining process.
    Zhang B; von Keitz M; Valentas K
    Biotechnol Bioeng; 2008 Dec; 101(5):903-12. PubMed ID: 18781691
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Simultaneous drug release at different rates from biodegradable polyurethane foams.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Light-Driven Waste-To-Value Upcycling: Bio-Based Polyols and Polyurethanes from the Photo-Oxygenation of Cardanols.
    Stuhr R; Bayer P; Stark CBW; Jacobi von Wangelin A
    ChemSusChem; 2021 Aug; 14(16):3325-3332. PubMed ID: 34184836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.